GetFreeCourses.Co-Udemy-R for Data Science Your First Step as a Data Scientist
    
    File List
    
        
            
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/015 Evaluating - Preparing New Data for Scoring.mp4  141.5 MB
 
                
                    - 03 Installing Libraries/001 Installing Libraries.mp4  140.7 MB
 
                
                    - 07 Model Evaluation and Selection/004 Evaluating the Model on Unseen Data.mp4  134.3 MB
 
                
                    - 07 Model Evaluation and Selection/003 Example of a High Variance Model.mp4  132.2 MB
 
                
                    - 05 Linear Regression/009 Gradient Descent Intuition - Part 1.mp4  130.8 MB
 
                
                    - 01 Introduction/001 Welcome to the Course!.mp4  128.5 MB
 
                
                    - 07 Model Evaluation and Selection/006 Performance across Training and Test Data.mp4  127.7 MB
 
                
                    - 08 Tree Based Models - Decision Trees/011 Regression Trees - Comparing between Tree and Linear Model.mp4  119.7 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/011 Modelling - Training a Random Forest.mp4  112.6 MB
 
                
                    - 08 Tree Based Models - Decision Trees/002 Classification Trees - First Split and Gini Impurity Concept.mp4  112.5 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/007 Feature Engineering - Visualizing Correlation and Adding Features to our table.mp4  111.3 MB
 
                
                    - 05 Linear Regression/012 Multivariate Linear Regression.mp4  109.5 MB
 
                
                    - 05 Linear Regression/007 Linear Regression Evaluation.mp4  108.6 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/008 Feature Engineering - Creating Weekday feature and Building Data Pipeline.mp4  108.2 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/003 Exploratory Data Analysis - Removing Outliers.mp4  106.4 MB
 
                
                    - 07 Model Evaluation and Selection/007 Regression Metrics - Plotting the Residuals.mp4  104.4 MB
 
                
                    - 06 Classification Problems and Logistic Regression/005 Log-Loss Function Intuition.mp4  93.9 MB
 
                
                    - 07 Model Evaluation and Selection/010 Classification Metrics - Fitting Logistic Regression and Confusion Matrix Intro.mp4  90.3 MB
 
                
                    - 02 Setting up Environment - R and R Studio/002 Installing R Studio.mp4  90.0 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/004 Feature Engineering - Time Based Features.mp4  89.2 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/009 Modelling - Preparing Data for Modelling.mp4  89.2 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/006 Feature Engineering - Building Location Based Features (Manhattan and Euclidean).mp4  89.1 MB
 
                
                    - 07 Model Evaluation and Selection/002 Example of a High Bias Model.mp4  88.8 MB
 
                
                    - 09 Tree Based Models - Random Forests/002 Fitting Different Decision Trees.mp4  85.9 MB
 
                
                    - 08 Tree Based Models - Decision Trees/007 Regression Trees - Intuition.mp4  84.8 MB
 
                
                    - 05 Linear Regression/010 Gradient Descent Intuition - Part 2.mp4  84.2 MB
 
                
                    - 07 Model Evaluation and Selection/013 Classification Metrics - Building ROC Curve.mp4  83.0 MB
 
                
                    - 08 Tree Based Models - Decision Trees/003 Classification Trees - Finding the Best Split with Minimum Gini Impurity.mp4  82.8 MB
 
                
                    - 05 Linear Regression/008 Linear Regression Closed Form Solution.mp4  82.0 MB
 
                
                    - 06 Classification Problems and Logistic Regression/002 Classification Problems Intuition - Why Linear Regression is unfit.mp4  81.8 MB
 
                
                    - 06 Classification Problems and Logistic Regression/007 Visualizing Log-Loss in 3 Dimensions.mp4  79.7 MB
 
                
                    - 04 Manipulating Data with Dplyr/005 Arrange and Mutate.mp4  74.8 MB
 
                
                    - 06 Classification Problems and Logistic Regression/006 Gradient Descent Intuition - Classification.mp4  74.5 MB
 
                
                    - 02 Setting up Environment - R and R Studio/001 Installing R.mp4  74.2 MB
 
                
                    - 09 Tree Based Models - Random Forests/003 Building a Random Forest from Scratch with Three Estimators.mp4  73.8 MB
 
                
                    - 07 Model Evaluation and Selection/005 Randomized Train and Test Split.mp4  73.2 MB
 
                
                    - 05 Linear Regression/011 Visualizing Gradient Descent.mp4  70.9 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/010 Modelling - Fitting Linear Regression.mp4  69.4 MB
 
                
                    - 06 Classification Problems and Logistic Regression/004 Summary of Logistic Regression and Accuracy.mp4  69.3 MB
 
                
                    - 08 Tree Based Models - Decision Trees/001 Classification Trees - Problem Evaluation and Fitting a Logistic Regression.mp4  69.3 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/002 Exploratory Data Analysis - Loading Taxi Trip and Analyzing Outliers.mp4  68.8 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/005 Feature Engineering - Visualizing Trip Duration per Feature.mp4  62.5 MB
 
                
                    - 07 Model Evaluation and Selection/009 Regression Metrics - R-Square Breakdown and MAPE.mp4  61.9 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/016 Evaluating - Scoring New Data and Submitting do Kaggle.mp4  61.7 MB
 
                
                    - 04 Manipulating Data with Dplyr/009 Joining Dataframes.mp4  61.7 MB
 
                
                    - 07 Model Evaluation and Selection/008 Regression Metrics - MSE, MAE and RMSE.mp4  61.3 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/012 Modelling - Caret Implementation and API.mp4  60.1 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/013 Modelling - Building Custom Experiments _ Hyperparameter Tuning.mp4  56.9 MB
 
                
                    - 06 Classification Problems and Logistic Regression/003 Calculating Sigmoid Function and Fitting a Logistic Regression.mp4  56.3 MB
 
                
                    - 08 Tree Based Models - Decision Trees/009 Regression Trees - Finding the Best Split with Residual Sum of Squares.mp4  55.0 MB
 
                
                    - 08 Tree Based Models - Decision Trees/010 Regression Trees - Fitting the Algorithm.mp4  52.1 MB
 
                
                    - 04 Manipulating Data with Dplyr/002 Filter and Pipe Format.mp4  51.6 MB
 
                
                    - 09 Tree Based Models - Random Forests/001 Random Forest Intuition and Subsetting Data.mp4  49.3 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/014 Modelling - Evaluating Best Model.mp4  49.2 MB
 
                
                    - 09 Tree Based Models - Random Forests/005 Random Forest - R Package Implementation.mp4  48.2 MB
 
                
                    - 07 Model Evaluation and Selection/014 Classification Metrics - ROCR Package and Area Under the Curve.mp4  45.7 MB
 
                
                    - 08 Tree Based Models - Decision Trees/005 Classification Trees - Adding more Thresholds and Visualizing Classification.mp4  45.4 MB
 
                
                    - 08 Tree Based Models - Decision Trees/004 Classification Trees - Fitting a Decision Tree using RPart.mp4  43.4 MB
 
                
                    - 07 Model Evaluation and Selection/012 Classification Metrics - Precision, Recall and F-Score.mp4  40.7 MB
 
                
                    - 05 Linear Regression/006 Training our First Linear Model.mp4  40.1 MB
 
                
                    - 05 Linear Regression/004 Fitting a Random Line.mp4  39.6 MB
 
                
                    - 04 Manipulating Data with Dplyr/001 Intro to Dplyr and Tibble Data Structure.mp4  38.8 MB
 
                
                    - 08 Tree Based Models - Decision Trees/008 Regression Trees -  Calculating Residual Sum of Squares.mp4  38.5 MB
 
                
                    - 04 Manipulating Data with Dplyr/006 Select and Distinct.mp4  37.0 MB
 
                
                    - 08 Tree Based Models - Decision Trees/006 Classification Trees - Tweaking Hyperparameters and Checking Accuracy.mp4  36.2 MB
 
                
                    - 09 Tree Based Models - Random Forests/004 Measuring the Accuracy of Each Trees and of the Ensemble Average.mp4  35.6 MB
 
                
                    - 05 Linear Regression/003 Plotting Feature (Age) and Target (Income) Variables.mp4  34.3 MB
 
                
                    - 05 Linear Regression/002 Loading the Data into R.mp4  33.0 MB
 
                
                    - 04 Manipulating Data with Dplyr/003 Glimpse and Lists as Columns.mp4  33.0 MB
 
                
                    - 04 Manipulating Data with Dplyr/007 Sample_N and Sample_Frac.mp4  30.4 MB
 
                
                    - 05 Linear Regression/005 Adjusting the Weight of our Linear Model.mp4  29.8 MB
 
                
                    - 04 Manipulating Data with Dplyr/008 Summarize and Group By.mp4  29.8 MB
 
                
                    - 07 Model Evaluation and Selection/011 Classification Metrics - TP, FP, TN, FN.mp4  27.9 MB
 
                
                    - 04 Manipulating Data with Dplyr/004 Function Encapsulation and Multiple Arguments.mp4  27.7 MB
 
                
                    - 03 Installing Libraries/002 Loading Libraries.mp4  27.1 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/001 Data Science Project - Taxi Trip Duration Project - Introduction.mp4  21.1 MB
 
                
                    - 11 Thank you!/003 Final Notes.mp4  13.8 MB
 
                
                    - 05 Linear Regression/001 Linear Regression - Introduction.mp4  12.8 MB
 
                
                    - 06 Classification Problems and Logistic Regression/001 Classification Problems - Introduction.mp4  10.1 MB
 
                
                    - 07 Model Evaluation and Selection/001 Model Evaluation and Selection - Introduction.mp4  7.8 MB
 
                
                    - 03 Installing Libraries/003 Let's start!.mp4  6.9 MB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/015 Evaluating - Preparing New Data for Scoring.en.srt  23.7 KB
 
                
                    - 07 Model Evaluation and Selection/006 Performance across Training and Test Data.en.srt  20.8 KB
 
                
                    - 05 Linear Regression/009 Gradient Descent Intuition - Part 1.en.srt  20.7 KB
 
                
                    - 07 Model Evaluation and Selection/004 Evaluating the Model on Unseen Data.en.srt  19.6 KB
 
                
                    - 06 Classification Problems and Logistic Regression/005 Log-Loss Function Intuition.en.srt  19.4 KB
 
                
                    - 05 Linear Regression/012 Multivariate Linear Regression.en.srt  19.4 KB
 
                
                    - 07 Model Evaluation and Selection/003 Example of a High Variance Model.en.srt  18.9 KB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/011 Modelling - Training a Random Forest.en.srt  18.4 KB
 
                
                    - 08 Tree Based Models - Decision Trees/002 Classification Trees - First Split and Gini Impurity Concept.en.srt  18.2 KB
 
                
                    - 05 Linear Regression/007 Linear Regression Evaluation.en.srt  18.0 KB
 
                
                    - 07 Model Evaluation and Selection/007 Regression Metrics - Plotting the Residuals.en.srt  17.9 KB
 
                
                    - 01 Introduction/001 Welcome to the Course!.en.srt  17.6 KB
 
                
                    - 08 Tree Based Models - Decision Trees/011 Regression Trees - Comparing between Tree and Linear Model.en.srt  17.6 KB
 
                
                    - 05 Linear Regression/008 Linear Regression Closed Form Solution.en.srt  17.4 KB
 
                
                    - 07 Model Evaluation and Selection/005 Randomized Train and Test Split.en.srt  16.8 KB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/008 Feature Engineering - Creating Weekday feature and Building Data Pipeline.en.srt  16.7 KB
 
                
                    - 07 Model Evaluation and Selection/010 Classification Metrics - Fitting Logistic Regression and Confusion Matrix Intro.en.srt  16.6 KB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/004 Feature Engineering - Time Based Features.en.srt  15.7 KB
 
                
                    - 06 Classification Problems and Logistic Regression/002 Classification Problems Intuition - Why Linear Regression is unfit.en.srt  15.6 KB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/007 Feature Engineering - Visualizing Correlation and Adding Features to our table.en.srt  15.5 KB
 
                
                    - 08 Tree Based Models - Decision Trees/007 Regression Trees - Intuition.en.srt  15.5 KB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/003 Exploratory Data Analysis - Removing Outliers.en.srt  15.5 KB
 
                
                    - 07 Model Evaluation and Selection/002 Example of a High Bias Model.en.srt  15.2 KB
 
                
                    - 07 Model Evaluation and Selection/013 Classification Metrics - Building ROC Curve.en.srt  14.3 KB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/009 Modelling - Preparing Data for Modelling.en.srt  14.2 KB
 
                
                    - 03 Installing Libraries/001 Installing Libraries.en.srt  14.0 KB
 
                
                    - 06 Classification Problems and Logistic Regression/007 Visualizing Log-Loss in 3 Dimensions.en.srt  13.3 KB
 
                
                    - 09 Tree Based Models - Random Forests/002 Fitting Different Decision Trees.en.srt  12.8 KB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/006 Feature Engineering - Building Location Based Features (Manhattan and Euclidean).en.srt  12.7 KB
 
                
                    - 05 Linear Regression/010 Gradient Descent Intuition - Part 2.en.srt  12.7 KB
 
                
                    - 05 Linear Regression/011 Visualizing Gradient Descent.en.srt  12.6 KB
 
                
                    - 08 Tree Based Models - Decision Trees/001 Classification Trees - Problem Evaluation and Fitting a Logistic Regression.en.srt  12.5 KB
 
                
                    - 06 Classification Problems and Logistic Regression/006 Gradient Descent Intuition - Classification.en.srt  12.5 KB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/002 Exploratory Data Analysis - Loading Taxi Trip and Analyzing Outliers.en.srt  12.0 KB
 
                
                    - 08 Tree Based Models - Decision Trees/003 Classification Trees - Finding the Best Split with Minimum Gini Impurity.en.srt  11.6 KB
 
                
                    - 06 Classification Problems and Logistic Regression/004 Summary of Logistic Regression and Accuracy.en.srt  11.0 KB
 
                
                    - 09 Tree Based Models - Random Forests/003 Building a Random Forest from Scratch with Three Estimators.en.srt  10.9 KB
 
                
                    - 02 Setting up Environment - R and R Studio/002 Installing R Studio.en.srt  10.8 KB
 
                
                    - 07 Model Evaluation and Selection/009 Regression Metrics - R-Square Breakdown and MAPE.en.srt  10.6 KB
 
                
                    - 09 Tree Based Models - Random Forests/001 Random Forest Intuition and Subsetting Data.en.srt  10.4 KB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/010 Modelling - Fitting Linear Regression.en.srt  10.3 KB
 
                
                    - 07 Model Evaluation and Selection/008 Regression Metrics - MSE, MAE and RMSE.en.srt  10.1 KB
 
                
                    - 04 Manipulating Data with Dplyr/005 Arrange and Mutate.en.srt  10.0 KB
 
                
                    - 06 Classification Problems and Logistic Regression/003 Calculating Sigmoid Function and Fitting a Logistic Regression.en.srt  10.0 KB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/016 Evaluating - Scoring New Data and Submitting do Kaggle.en.srt  9.8 KB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/012 Modelling - Caret Implementation and API.en.srt  9.2 KB
 
                
                    - 07 Model Evaluation and Selection/014 Classification Metrics - ROCR Package and Area Under the Curve.en.srt  9.1 KB
 
                
                    - 04 Manipulating Data with Dplyr/002 Filter and Pipe Format.en.srt  9.0 KB
 
                
                    - 02 Setting up Environment - R and R Studio/001 Installing R.en.srt  8.9 KB
 
                
                    - 04 Manipulating Data with Dplyr/009 Joining Dataframes.en.srt  8.8 KB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/005 Feature Engineering - Visualizing Trip Duration per Feature.en.srt  8.7 KB
 
                
                    - 08 Tree Based Models - Decision Trees/010 Regression Trees - Fitting the Algorithm.en.srt  8.5 KB
 
                
                    - 09 Tree Based Models - Random Forests/005 Random Forest - R Package Implementation.en.srt  8.4 KB
 
                
                    - 07 Model Evaluation and Selection/012 Classification Metrics - Precision, Recall and F-Score.en.srt  8.2 KB
 
                
                    - 08 Tree Based Models - Decision Trees/005 Classification Trees - Adding more Thresholds and Visualizing Classification.en.srt  8.0 KB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/013 Modelling - Building Custom Experiments _ Hyperparameter Tuning.en.srt  8.0 KB
 
                
                    - 08 Tree Based Models - Decision Trees/009 Regression Trees - Finding the Best Split with Residual Sum of Squares.en.srt  7.9 KB
 
                
                    - 04 Manipulating Data with Dplyr/001 Intro to Dplyr and Tibble Data Structure.en.srt  7.8 KB
 
                
                    - 08 Tree Based Models - Decision Trees/004 Classification Trees - Fitting a Decision Tree using RPart.en.srt  7.5 KB
 
                
                    - 05 Linear Regression/006 Training our First Linear Model.en.srt  6.8 KB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/014 Modelling - Evaluating Best Model.en.srt  6.7 KB
 
                
                    - 05 Linear Regression/004 Fitting a Random Line.en.srt  6.7 KB
 
                
                    - 04 Manipulating Data with Dplyr/006 Select and Distinct.en.srt  6.3 KB
 
                
                    - 08 Tree Based Models - Decision Trees/008 Regression Trees -  Calculating Residual Sum of Squares.en.srt  6.3 KB
 
                
                    - 08 Tree Based Models - Decision Trees/006 Classification Trees - Tweaking Hyperparameters and Checking Accuracy.en.srt  6.1 KB
 
                
                    - 05 Linear Regression/002 Loading the Data into R.en.srt  5.7 KB
 
                
                    - 05 Linear Regression/003 Plotting Feature (Age) and Target (Income) Variables.en.srt  5.6 KB
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/001 Data Science Project - Taxi Trip Duration Project - Introduction.en.srt  5.6 KB
 
                
                    - 05 Linear Regression/005 Adjusting the Weight of our Linear Model.en.srt  4.9 KB
 
                
                    - 07 Model Evaluation and Selection/011 Classification Metrics - TP, FP, TN, FN.en.srt  4.8 KB
 
                
                    - 09 Tree Based Models - Random Forests/004 Measuring the Accuracy of Each Trees and of the Ensemble Average.en.srt  4.7 KB
 
                
                    - 04 Manipulating Data with Dplyr/003 Glimpse and Lists as Columns.en.srt  4.6 KB
 
                
                    - 04 Manipulating Data with Dplyr/008 Summarize and Group By.en.srt  4.4 KB
 
                
                    - 04 Manipulating Data with Dplyr/004 Function Encapsulation and Multiple Arguments.en.srt  4.4 KB
 
                
                    - 04 Manipulating Data with Dplyr/007 Sample_N and Sample_Frac.en.srt  4.2 KB
 
                
                    - 07 Model Evaluation and Selection/001 Model Evaluation and Selection - Introduction.en.srt  3.1 KB
 
                
                    - 03 Installing Libraries/002 Loading Libraries.en.srt  2.8 KB
 
                
                    - 06 Classification Problems and Logistic Regression/001 Classification Problems - Introduction.en.srt  2.7 KB
 
                
                    - 11 Thank you!/003 Final Notes.en.srt  1.9 KB
 
                
                    - 05 Linear Regression/001 Linear Regression - Introduction.en.srt  1.8 KB
 
                
                    - 11 Thank you!/001 Bonus Lecture - Other Courses.html  1.7 KB
 
                
                    - 01 Introduction/002 Course Materials.html  1.3 KB
 
                
                    - 11 Thank you!/002 Detailed Feedback.html  1.2 KB
 
                
                    - 04 Manipulating Data with Dplyr/010 Small Typo.html  1.1 KB
 
                
                    - 03 Installing Libraries/003 Let's start!.en.srt  995 bytes
 
                
                    - 01 Introduction/external-assets-links.txt  231 bytes
 
                
                    - 04 Manipulating Data with Dplyr/How you can help GetFreeCourses.Co.txt  182 bytes
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/How you can help GetFreeCourses.Co.txt  182 bytes
 
                
                    - How you can help GetFreeCourses.Co.txt  182 bytes
 
                
                    - 02 Setting up Environment - R and R Studio/external-assets-links.txt  120 bytes
 
                
                    - 04 Manipulating Data with Dplyr/GetFreeCourses.Co.url  116 bytes
 
                
                    - 10 Data Science Project - Kaggle Taxi Trip Duration/GetFreeCourses.Co.url  116 bytes
 
                
                    - Download Paid Udemy Courses For Free.url  116 bytes
 
                
                    - GetFreeCourses.Co.url  116 bytes
 
                
            
        
     
    Download Torrent
    
    Related Resources
    
    Copyright Infringement
    
        If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.