[FreeCoursesOnline.Me] Coursera - Natural Language Processing
    
    File List
    
        
            
                
                    - 002.How to  from plain texts to their classification/009. Hashing trick in spam filtering.mp4  61.2 MB
- 009.Statistical Machine Translation/028. Introduction to Machine Translation.mp4  57.1 MB
- 008.Topic models/027. The zoo of topic models.mp4  51.3 MB
- 002.How to  from plain texts to their classification/006. Text preprocessing.mp4  51.3 MB
- 003.Simple deep learning for text classification/010. Neural networks for words.mp4  50.7 MB
- 005.Sequence tagging with probabilistic models/015. Hidden Markov Models.mp4  49.4 MB
- 002.How to  from plain texts to their classification/007. Feature extraction from text.mp4  48.3 MB
- 012.Natural Language Understanding (NLU)/038. Intent classifier and slot tagger (NLU).mp4  48.0 MB
- 007.Word and sentence embeddings/021. Explicit and implicit matrix factorization.mp4  45.8 MB
- 013.Dialog Manager (DM)/041. State tracking in DM.mp4  44.9 MB
- 009.Statistical Machine Translation/030. Word Alignment Models.mp4  43.1 MB
- 006.Deep Learning for the same tasks/019. Whether you need to predict a next word or a label - LSTM is here to help!.mp4  42.9 MB
- 007.Word and sentence embeddings/024. Why words  From character to sentence embeddings.mp4  42.8 MB
- 012.Natural Language Understanding (NLU)/037. Task-oriented dialog systems.mp4  42.3 MB
- 005.Sequence tagging with probabilistic models/017. MEMMs, CRFs and other sequential models for Named Entity Recognition.mp4  41.7 MB
- 011.Summarization and simplification tasks/036. Get to the point! Summarization with pointer-generator networks.mp4  41.0 MB
- 007.Word and sentence embeddings/023. Word analogies without magic   king     man + woman != queen.mp4  40.1 MB
- 010.Encoder-decoder-attention arhitecture/033. How to deal with a vocabulary.mp4  40.1 MB
- 007.Word and sentence embeddings/022. Word2vec and doc2vec (and how to evaluate them).mp4  39.4 MB
- 005.Sequence tagging with probabilistic models/016. Viterbi algorithm   what are the most probable tags.mp4  39.3 MB
- 010.Encoder-decoder-attention arhitecture/034. How to implement a conversational chat-bot.mp4  38.2 MB
- 011.Summarization and simplification tasks/035. Sequence to sequence learning   one-size fits all.mp4  36.7 MB
- 002.How to  from plain texts to their classification/008. Linear models for sentiment analysis.mp4  36.1 MB
- 001.Introduction to NLP and our course/005. [Optional] Linguistic knowledge in NLP.mp4  35.0 MB
- 004.Language modeling  it's all about counting!/012. Count! N-gram language models.mp4  33.9 MB
- 006.Deep Learning for the same tasks/018. Neural Language Models.mp4  31.5 MB
- 010.Encoder-decoder-attention arhitecture/032. Attention mechanism.mp4  31.2 MB
- 001.Introduction to NLP and our course/003. Main approaches in NLP.mp4  30.0 MB
- 012.Natural Language Understanding (NLU)/040. Adding lexicon to NLU.mp4  28.4 MB
- 007.Word and sentence embeddings/020. Distributional semantics  bee and honey vs. bee an bumblebee.mp4  28.3 MB
- 003.Simple deep learning for text classification/011. Neural networks for characters.mp4  27.9 MB
- 004.Language modeling  it's all about counting!/014. Smoothing  what if we see new n-grams.mp4  27.3 MB
- 013.Dialog Manager (DM)/042. Policy optimisation in DM.mp4  27.1 MB
- 004.Language modeling  it's all about counting!/013. Perplexity  is our model surprised with a real text.mp4  26.8 MB
- 001.Introduction to NLP and our course/004. Brief overview of the next weeks.mp4  26.2 MB
- 008.Topic models/025. Topic modeling  a way to navigate  through text collections.mp4  26.0 MB
- 008.Topic models/026. How to train PLSA.mp4  23.5 MB
- 010.Encoder-decoder-attention arhitecture/031. Encoder-decoder architecture.mp4  22.4 MB
- 009.Statistical Machine Translation/029. Noisy channel  said in English, received in French.mp4  21.7 MB
- 013.Dialog Manager (DM)/043. Final remarks.mp4  21.6 MB
- 001.Introduction to NLP and our course/002. Welcome video.mp4  20.1 MB
- 012.Natural Language Understanding (NLU)/039. Adding context to NLU.mp4  17.1 MB
- 001.Introduction to NLP and our course/001. About this course.mp4  12.6 MB
- 002.How to  from plain texts to their classification/009. Hashing trick in spam filtering.srt  22.9 KB
- 002.How to  from plain texts to their classification/006. Text preprocessing.srt  20.2 KB
- 003.Simple deep learning for text classification/010. Neural networks for words.srt  19.0 KB
- 009.Statistical Machine Translation/028. Introduction to Machine Translation.srt  18.8 KB
- 012.Natural Language Understanding (NLU)/038. Intent classifier and slot tagger (NLU).srt  18.5 KB
- 002.How to  from plain texts to their classification/007. Feature extraction from text.srt  18.3 KB
- 013.Dialog Manager (DM)/041. State tracking in DM.srt  17.5 KB
- 012.Natural Language Understanding (NLU)/037. Task-oriented dialog systems.srt  17.1 KB
- 008.Topic models/027. The zoo of topic models.srt  16.9 KB
- 005.Sequence tagging with probabilistic models/015. Hidden Markov Models.srt  16.6 KB
- 009.Statistical Machine Translation/030. Word Alignment Models.srt  15.4 KB
- 007.Word and sentence embeddings/021. Explicit and implicit matrix factorization.srt  15.4 KB
- 011.Summarization and simplification tasks/036. Get to the point! Summarization with pointer-generator networks.srt  15.3 KB
- 006.Deep Learning for the same tasks/019. Whether you need to predict a next word or a label - LSTM is here to help!.srt  14.9 KB
- 007.Word and sentence embeddings/024. Why words  From character to sentence embeddings.srt  14.6 KB
- 010.Encoder-decoder-attention arhitecture/033. How to deal with a vocabulary.srt  14.5 KB
- 005.Sequence tagging with probabilistic models/017. MEMMs, CRFs and other sequential models for Named Entity Recognition.srt  14.5 KB
- 010.Encoder-decoder-attention arhitecture/034. How to implement a conversational chat-bot.srt  14.2 KB
- 004.Language modeling  it's all about counting!/012. Count! N-gram language models.srt  13.5 KB
- 011.Summarization and simplification tasks/035. Sequence to sequence learning   one-size fits all.srt  13.4 KB
- 005.Sequence tagging with probabilistic models/016. Viterbi algorithm   what are the most probable tags.srt  13.0 KB
- 007.Word and sentence embeddings/023. Word analogies without magic   king     man + woman != queen.srt  12.8 KB
- 001.Introduction to NLP and our course/005. [Optional] Linguistic knowledge in NLP.srt  12.7 KB
- 007.Word and sentence embeddings/022. Word2vec and doc2vec (and how to evaluate them).srt  12.7 KB
- 002.How to  from plain texts to their classification/008. Linear models for sentiment analysis.srt  12.6 KB
- 010.Encoder-decoder-attention arhitecture/032. Attention mechanism.srt  12.1 KB
- 006.Deep Learning for the same tasks/018. Neural Language Models.srt  11.8 KB
- 007.Word and sentence embeddings/020. Distributional semantics  bee and honey vs. bee an bumblebee.srt  11.0 KB
- 003.Simple deep learning for text classification/011. Neural networks for characters.srt  10.4 KB
- 004.Language modeling  it's all about counting!/013. Perplexity  is our model surprised with a real text.srt  10.4 KB
- 013.Dialog Manager (DM)/042. Policy optimisation in DM.srt  10.1 KB
- 012.Natural Language Understanding (NLU)/040. Adding lexicon to NLU.srt  10.0 KB
- 001.Introduction to NLP and our course/003. Main approaches in NLP.srt  9.6 KB
- 001.Introduction to NLP and our course/004. Brief overview of the next weeks.srt  9.5 KB
- 004.Language modeling  it's all about counting!/014. Smoothing  what if we see new n-grams.srt  9.3 KB
- 008.Topic models/025. Topic modeling  a way to navigate  through text collections.srt  8.9 KB
- 008.Topic models/026. How to train PLSA.srt  8.6 KB
- 010.Encoder-decoder-attention arhitecture/031. Encoder-decoder architecture.srt  8.1 KB
- 009.Statistical Machine Translation/029. Noisy channel  said in English, received in French.srt  7.6 KB
- 013.Dialog Manager (DM)/043. Final remarks.srt  7.4 KB
- 001.Introduction to NLP and our course/002. Welcome video.srt  7.3 KB
- 012.Natural Language Understanding (NLU)/039. Adding context to NLU.srt  6.9 KB
- 001.Introduction to NLP and our course/001. About this course.srt  3.2 KB
- [FTU Forum].url  252 bytes
- [FreeCoursesOnline.Me].url  133 bytes
- [FreeTutorials.Us].url  119 bytes
 
    Download Torrent
    
    Related Resources
    
    Copyright Infringement
    
        If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.