Udemy - Machine Learning Natural Language Processing in Python (V2) (12.2024)
    
    File List
    
        
            
                
                    - 18 - Recurrent Neural Networks/9 -Parts-of-Speech (POS) Tagging in Tensorflow.mp4  145.1 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/14 -TF-IDF (Code).mp4  124.9 MB
 
                
                    - 16 - Feedforward Artificial Neural Networks/13 -CBOW in Tensorflow (Advanced).mp4  117.6 MB
 
                
                    - 22 - Effective Learning Strategies for Machine Learning FAQ/4 -Machine Learning and AI Prerequisite Roadmap (pt 2).mp4  108.1 MB
 
                
                    - 9 - Spam Detection/6 -Spam Detection in Python.mp4  107.6 MB
 
                
                    - 7 - Cipher Decryption (Advanced)/4 -Genetic Algorithms.mp4  105.2 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/10 -Count Vectorizer (Code).mp4  102.0 MB
 
                
                    - 6 - Article Spinner (Intermediate)/4 -Article Spinner in Python (pt 1).mp4  95.9 MB
 
                
                    - 16 - Feedforward Artificial Neural Networks/4 -Activation Functions.mp4  89.3 MB
 
                
                    - 17 - Convolutional Neural Networks/6 -CNN Architecture.mp4  89.3 MB
 
                
                    - 11 - Text Summarization/8 -TextRank in Python (Advanced).mp4  82.3 MB
 
                
                    - 18 - Recurrent Neural Networks/6 -GRU and LSTM (pt 1).mp4  82.2 MB
 
                
                    - 13 - Latent Semantic Analysis (Latent Semantic Indexing)/2 -SVD (Singular Value Decomposition) Intuition.mp4  81.8 MB
 
                
                    - 15 - The Neuron/4 -Text Classification in Tensorflow.mp4  81.7 MB
 
                
                    - 17 - Convolutional Neural Networks/2 -What is Convolution.mp4  79.9 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/16 -How to Build TF-IDF From Scratch.mp4  79.8 MB
 
                
                    - 22 - Effective Learning Strategies for Machine Learning FAQ/3 -Machine Learning and AI Prerequisite Roadmap (pt 1).mp4  79.7 MB
 
                
                    - 11 - Text Summarization/4 -Text Summarization in Python.mp4  78.2 MB
 
                
                    - 6 - Article Spinner (Intermediate)/5 -Article Spinner in Python (pt 2).mp4  75.4 MB
 
                
                    - 17 - Convolutional Neural Networks/5 -Convolution on Color Images.mp4  75.2 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/9 -Stemming and Lemmatization Demo.mp4  74.8 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/6 -Tokenization.mp4  73.5 MB
 
                
                    - 1 - Introduction/1 -Introduction and Outline.mp4  73.0 MB
 
                
                    - 12 - Topic Modeling/6 -Topic Modeling with Latent Dirichlet Allocation (LDA) in Python.mp4  72.4 MB
 
                
                    - 5 - Markov Models (Intermediate)/8 -Building a Text Classifier (Code pt 2).mp4  72.2 MB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/1 -How to Code by Yourself (part 1).mp4  71.9 MB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/3 -Proof that using Jupyter Notebook is the same as not using it.mp4  69.4 MB
 
                
                    - 15 - The Neuron/2 -Fitting a Line.mp4  68.6 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/18 -Neural Word Embeddings Demo.mp4  66.8 MB
 
                
                    - 7 - Cipher Decryption (Advanced)/3 -Language Models (Review).mp4  65.5 MB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/6 -How to use Github & Extra Coding Tips (Optional).mp4  63.9 MB
 
                
                    - 10 - Sentiment Analysis/2 -Logistic Regression Intuition (pt 1).mp4  63.6 MB
 
                
                    - 10 - Sentiment Analysis/6 -Sentiment Analysis in Python (pt 1).mp4  63.1 MB
 
                
                    - 5 - Markov Models (Intermediate)/11 -Language Model (Code pt 1).mp4  62.8 MB
 
                
                    - 9 - Spam Detection/4 -Aside Class Imbalance, ROC, AUC, and F1 Score (pt 1).mp4  60.2 MB
 
                
                    - 12 - Topic Modeling/5 -Latent Dirichlet Allocation (LDA) - Intuition (Advanced).mp4  60.2 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/12 -TF-IDF (Theory).mp4  58.6 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/8 -Stemming and Lemmatization.mp4  57.9 MB
 
                
                    - 5 - Markov Models (Intermediate)/7 -Building a Text Classifier (Code pt 1).mp4  57.7 MB
 
                
                    - 13 - Latent Semantic Analysis (Latent Semantic Indexing)/4 -Latent Semantic Analysis  Latent Semantic Indexing in Python.mp4  57.6 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/5 -Count Vectorizer (Theory).mp4  57.4 MB
 
                
                    - 18 - Recurrent Neural Networks/5 -RNNs Paying Attention to Shapes.mp4  57.2 MB
 
                
                    - 16 - Feedforward Artificial Neural Networks/3 -The Geometrical Picture.mp4  56.5 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/21 -How To Do NLP In Other Languages.mp4  56.0 MB
 
                
                    - 12 - Topic Modeling/2 -Latent Dirichlet Allocation (LDA) - Essentials.mp4  55.2 MB
 
                
                    - 9 - Spam Detection/5 -Aside Class Imbalance, ROC, AUC, and F1 Score (pt 2).mp4  54.0 MB
 
                
                    - 20 - Setting Up Your Environment FAQ/2 -Anaconda Environment Setup.mp4  52.6 MB
 
                
                    - 12 - Topic Modeling/7 -Non-Negative Matrix Factorization (NMF) Intuition.mp4  52.5 MB
 
                
                    - 5 - Markov Models (Intermediate)/12 -Language Model (Code pt 2).mp4  52.4 MB
 
                
                    - 10 - Sentiment Analysis/7 -Sentiment Analysis in Python (pt 2).mp4  52.0 MB
 
                
                    - 15 - The Neuron/6 -How does a model learn.mp4  51.6 MB
 
                
                    - 9 - Spam Detection/2 -Naive Bayes Intuition.mp4  51.3 MB
 
                
                    - 20 - Setting Up Your Environment FAQ/3 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4  50.9 MB
 
                
                    - 18 - Recurrent Neural Networks/7 -GRU and LSTM (pt 2).mp4  50.3 MB
 
                
                    - 16 - Feedforward Artificial Neural Networks/8 -Text Preprocessing Code Preparation.mp4  50.0 MB
 
                
                    - 11 - Text Summarization/6 -TextRank - How It Really Works (Advanced).mp4  49.3 MB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/2 -How to Code by Yourself (part 2).mp4  49.2 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/3 -What is a Vector.mp4  48.9 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/15 -Word-to-Index Mapping.mp4  47.6 MB
 
                
                    - 16 - Feedforward Artificial Neural Networks/2 -Forward Propagation.mp4  46.7 MB
 
                
                    - 11 - Text Summarization/5 -TextRank Intuition.mp4  45.9 MB
 
                
                    - 18 - Recurrent Neural Networks/8 -RNN for Text Classification in Tensorflow.mp4  45.9 MB
 
                
                    - 5 - Markov Models (Intermediate)/3 -The Markov Model.mp4  45.8 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/17 -Neural Word Embeddings.mp4  45.5 MB
 
                
                    - 15 - The Neuron/5 -The Neuron.mp4  45.3 MB
 
                
                    - 11 - Text Summarization/9 -Text Summarization in Python - The Easy Way (Beginner).mp4  45.2 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/11 -Vector Similarity.mp4  45.1 MB
 
                
                    - 5 - Markov Models (Intermediate)/9 -Language Model (Theory).mp4  45.0 MB
 
                
                    - 16 - Feedforward Artificial Neural Networks/5 -Multiclass Classification.mp4  44.4 MB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/4 -Get Your Hands Dirty, Practical Coding Experience, Data Links.mp4  43.6 MB
 
                
                    - 19 - Course Conclusion/2 -Where is BERT, ChatGPT, GPT-4,.mp4  42.8 MB
 
                
                    - 10 - Sentiment Analysis/1 -Sentiment Analysis - Problem Description.mp4  42.7 MB
 
                
                    - 16 - Feedforward Artificial Neural Networks/10 -Embeddings.mp4  42.3 MB
 
                
                    - 18 - Recurrent Neural Networks/4 -RNN Code Preparation.mp4  42.1 MB
 
                
                    - 17 - Convolutional Neural Networks/8 -Convolutional Neural Network for NLP in Tensorflow.mp4  42.0 MB
 
                
                    - 6 - Article Spinner (Intermediate)/1 -Article Spinning - Problem Description.mp4  41.9 MB
 
                
                    - 18 - Recurrent Neural Networks/3 -Simple RNN  Elman Unit (pt 2).mp4  41.2 MB
 
                
                    - 7 - Cipher Decryption (Advanced)/10 -Code pt 5.mp4  41.0 MB
 
                
                    - 18 - Recurrent Neural Networks/2 -Simple RNN  Elman Unit (pt 1).mp4  40.8 MB
 
                
                    - 17 - Convolutional Neural Networks/7 -CNNs for Text.mp4  40.5 MB
 
                
                    - 23 - Appendix  FAQ Finale/2 -BONUS.mp4  40.4 MB
 
                
                    - 10 - Sentiment Analysis/4 -Logistic Regression Training and Interpretation (pt 3).mp4  39.6 MB
 
                
                    - 7 - Cipher Decryption (Advanced)/11 -Code pt 6.mp4  39.4 MB
 
                
                    - 7 - Cipher Decryption (Advanced)/7 -Code pt 2.mp4  39.1 MB
 
                
                    - 22 - Effective Learning Strategies for Machine Learning FAQ/2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4  39.0 MB
 
                
                    - 16 - Feedforward Artificial Neural Networks/1 -ANN - Section Introduction.mp4  38.6 MB
 
                
                    - 16 - Feedforward Artificial Neural Networks/15 -Aside How to Choose Hyperparameters (Optional).mp4  38.1 MB
 
                
                    - 19 - Course Conclusion/1 -What to Learn Next.mp4  37.4 MB
 
                
                    - 16 - Feedforward Artificial Neural Networks/7 -Text Classification ANN in Tensorflow.mp4  36.1 MB
 
                
                    - 12 - Topic Modeling/8 -Topic Modeling with Non-Negative Matrix Factorization (NMF) in Python.mp4  36.0 MB
 
                
                    - 13 - Latent Semantic Analysis (Latent Semantic Indexing)/3 -LSA  LSI Applying SVD to NLP.mp4  34.4 MB
 
                
                    - 5 - Markov Models (Intermediate)/4 -Probability Smoothing and Log-Probabilities.mp4  34.1 MB
 
                
                    - 15 - The Neuron/3 -Classification Code Preparation.mp4  32.9 MB
 
                
                    - 5 - Markov Models (Intermediate)/2 -The Markov Property.mp4  32.2 MB
 
                
                    - 18 - Recurrent Neural Networks/10 -Named Entity Recognition (NER) in Tensorflow.mp4  31.5 MB
 
                
                    - 9 - Spam Detection/1 -Spam Detection - Problem Description.mp4  31.3 MB
 
                
                    - 16 - Feedforward Artificial Neural Networks/9 -Text Preprocessing in Tensorflow.mp4  30.9 MB
 
                
                    - 17 - Convolutional Neural Networks/4 -What is Convolution (Weight Sharing).mp4  29.8 MB
 
                
                    - 8 - Machine Learning Models (Introduction)/1 -Machine Learning Models (Introduction).mp4  29.6 MB
 
                
                    - 7 - Cipher Decryption (Advanced)/8 -Code pt 3.mp4  29.5 MB
 
                
                    - 5 - Markov Models (Intermediate)/6 -Building a Text Classifier (Exercise Prompt).mp4  29.4 MB
 
                
                    - 13 - Latent Semantic Analysis (Latent Semantic Indexing)/5 -LSA  LSI Exercises.mp4  29.0 MB
 
                
                    - 5 - Markov Models (Intermediate)/5 -Building a Text Classifier (Theory).mp4  28.9 MB
 
                
                    - 5 - Markov Models (Intermediate)/10 -Language Model (Exercise Prompt).mp4  28.8 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/2 -Basic Definitions for NLP.mp4  28.4 MB
 
                
                    - 6 - Article Spinner (Intermediate)/6 -Case Study Article Spinning Gone Wrong.mp4  28.2 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/22 -Suggestion Box.mp4  27.2 MB
 
                
                    - 4 - Probabilistic Models (Introduction)/1 -Probabilistic Models (Introduction).mp4  26.9 MB
 
                
                    - 1 - Introduction/2 -Are You Beginner, Intermediate, or Advanced All are OK!.mp4  26.7 MB
 
                
                    - 7 - Cipher Decryption (Advanced)/1 -Section Introduction.mp4  26.3 MB
 
                
                    - 11 - Text Summarization/2 -Text Summarization Using Vectors.mp4  25.8 MB
 
                
                    - 11 - Text Summarization/1 -Text Summarization Section Introduction.mp4  25.8 MB
 
                
                    - 7 - Cipher Decryption (Advanced)/9 -Code pt 4.mp4  25.6 MB
 
                
                    - 17 - Convolutional Neural Networks/1 -CNN - Section Introduction.mp4  25.6 MB
 
                
                    - 6 - Article Spinner (Intermediate)/3 -Article Spinner Exercise Prompt.mp4  24.6 MB
 
                
                    - 17 - Convolutional Neural Networks/3 -What is Convolution (Pattern Matching).mp4  24.6 MB
 
                
                    - 14 - Deep Learning (Introduction)/1 -Deep Learning Introduction (Intermediate-Advanced).mp4  24.5 MB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/5 -Where To Get the Code Troubleshooting.mp4  24.3 MB
 
                
                    - 7 - Cipher Decryption (Advanced)/14 -Section Conclusion.mp4  24.2 MB
 
                
                    - 10 - Sentiment Analysis/3 -Multiclass Logistic Regression (pt 2).mp4  23.6 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/7 -Stopwords.mp4  23.4 MB
 
                
                    - 20 - Setting Up Your Environment FAQ/1 -Pre-Installation Check.mp4  22.7 MB
 
                
                    - 2 - Getting Set Up/1 -Where To Get the Code.mp4  22.5 MB
 
                
                    - 2 - Getting Set Up/3 -Temporary 403 Errors.mp4  22.0 MB
 
                
                    - 13 - Latent Semantic Analysis (Latent Semantic Indexing)/1 -LSA  LSI Section Introduction.mp4  20.9 MB
 
                
                    - 18 - Recurrent Neural Networks/1 -RNN - Section Introduction.mp4  20.9 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/19 -Vector Models & Text Preprocessing Summary.mp4  20.9 MB
 
                
                    - 7 - Cipher Decryption (Advanced)/5 -Code Preparation.mp4  20.6 MB
 
                
                    - 16 - Feedforward Artificial Neural Networks/6 -ANN Code Preparation.mp4  20.1 MB
 
                
                    - 11 - Text Summarization/10 -Text Summarization Section Summary.mp4  20.1 MB
 
                
                    - 22 - Effective Learning Strategies for Machine Learning FAQ/1 -How to Succeed in this Course (Long Version).mp4  17.9 MB
 
                
                    - 7 - Cipher Decryption (Advanced)/13 -Real-World Application Acoustic Keylogger.mp4  17.7 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/1 -Vector Models & Text Preprocessing Intro.mp4  17.5 MB
 
                
                    - 7 - Cipher Decryption (Advanced)/2 -Ciphers.mp4  17.2 MB
 
                
                    - 12 - Topic Modeling/1 -Topic Modeling Section Introduction.mp4  17.0 MB
 
                
                    - 10 - Sentiment Analysis/5 -Sentiment Analysis - Exercise Prompt.mp4  16.6 MB
 
                
                    - 23 - Appendix  FAQ Finale/1 -What is the Appendix.mp4  16.4 MB
 
                
                    - 2 - Getting Set Up/2 -How to Succeed in This Course.mp4  16.3 MB
 
                
                    - 7 - Cipher Decryption (Advanced)/6 -Code pt 1.mp4  16.0 MB
 
                
                    - 6 - Article Spinner (Intermediate)/2 -Article Spinning - N-Gram Approach.mp4  15.9 MB
 
                
                    - 16 - Feedforward Artificial Neural Networks/11 -CBOW (Advanced).mp4  15.8 MB
 
                
                    - 5 - Markov Models (Intermediate)/13 -Markov Models Section Summary.mp4  15.6 MB
 
                
                    - 7 - Cipher Decryption (Advanced)/12 -Cipher Decryption - Additional Discussion.mp4  14.7 MB
 
                
                    - 18 - Recurrent Neural Networks/11 -Exercise Return to CNNs (Advanced).mp4  14.6 MB
 
                
                    - 12 - Topic Modeling/3 -LDA - Code Preparation.mp4  14.5 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/4 -Bag of Words.mp4  13.9 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/13 -(Interactive) Recommender Exercise Prompt.mp4  13.4 MB
 
                
                    - 5 - Markov Models (Intermediate)/1 -Markov Models Section Introduction.mp4  13.1 MB
 
                
                    - 15 - The Neuron/1 -The Neuron - Section Introduction.mp4  11.0 MB
 
                
                    - 15 - The Neuron/7 -The Neuron - Section Summary.mp4  10.3 MB
 
                
                    - 12 - Topic Modeling/9 -Topic Modeling Section Summary.mp4  9.8 MB
 
                
                    - 18 - Recurrent Neural Networks/12 -RNN - Section Summary.mp4  9.1 MB
 
                
                    - 12 - Topic Modeling/4 -LDA - Maybe Useful Picture (Optional).mp4  9.0 MB
 
                
                    - 9 - Spam Detection/3 -Spam Detection - Exercise Prompt.mp4  8.7 MB
 
                
                    - 17 - Convolutional Neural Networks/9 -CNN - Section Summary.mp4  8.2 MB
 
                
                    - 11 - Text Summarization/3 -Text Summarization Exercise Prompt.mp4  8.1 MB
 
                
                    - 16 - Feedforward Artificial Neural Networks/14 -ANN - Section Summary.mp4  7.6 MB
 
                
                    - 11 - Text Summarization/7 -TextRank Exercise Prompt (Advanced).mp4  7.5 MB
 
                
                    - 3 - Vector Models and Text Preprocessing/20 -Text Summarization Preview.mp4  6.3 MB
 
                
                    - 16 - Feedforward Artificial Neural Networks/12 -CBOW Exercise Prompt.mp4  5.0 MB
 
                
                    - 22 - Effective Learning Strategies for Machine Learning FAQ/2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt  28.3 KB
 
                
                    - 22 - Effective Learning Strategies for Machine Learning FAQ/subtitles/2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.ko_KR.vtt  27.5 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/4 -Genetic Algorithms.vtt  25.4 KB
 
                
                    - 17 - Convolutional Neural Networks/6 -CNN Architecture.vtt  25.0 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/subtitles/4 -Genetic Algorithms.ko_KR.vtt  24.7 KB
 
                
                    - 17 - Convolutional Neural Networks/subtitles/6 -CNN Architecture.ko_KR.vtt  24.5 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/14 -TF-IDF (Code).vtt  21.6 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/14 -TF-IDF (Code).ko_KR.vtt  21.1 KB
 
                
                    - 22 - Effective Learning Strategies for Machine Learning FAQ/4 -Machine Learning and AI Prerequisite Roadmap (pt 2).vtt  20.7 KB
 
                
                    - 22 - Effective Learning Strategies for Machine Learning FAQ/subtitles/4 -Machine Learning and AI Prerequisite Roadmap (pt 2).ko_KR.vtt  20.5 KB
 
                
                    - 18 - Recurrent Neural Networks/6 -GRU and LSTM (pt 1).vtt  20.3 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/4 -Activation Functions.vtt  20.0 KB
 
                
                    - 18 - Recurrent Neural Networks/subtitles/9 -Parts-of-Speech (POS) Tagging in Tensorflow.ko_KR.vtt  19.9 KB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/1 -How to Code by Yourself (part 1).vtt  19.8 KB
 
                
                    - 18 - Recurrent Neural Networks/9 -Parts-of-Speech (POS) Tagging in Tensorflow.vtt  19.8 KB
 
                
                    - 10 - Sentiment Analysis/2 -Logistic Regression Intuition (pt 1).vtt  19.7 KB
 
                
                    - 18 - Recurrent Neural Networks/subtitles/6 -GRU and LSTM (pt 1).ko_KR.vtt  19.5 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/subtitles/4 -Activation Functions.ko_KR.vtt  19.2 KB
 
                
                    - 10 - Sentiment Analysis/subtitles/2 -Logistic Regression Intuition (pt 1).ko_KR.vtt  18.9 KB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/subtitles/1 -How to Code by Yourself (part 1).ko_KR.vtt  18.9 KB
 
                
                    - 17 - Convolutional Neural Networks/5 -Convolution on Color Images.vtt  18.3 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/subtitles/13 -CBOW in Tensorflow (Advanced).ko_KR.vtt  18.1 KB
 
                
                    - 20 - Setting Up Your Environment FAQ/subtitles/2 -Anaconda Environment Setup.ko_KR.vtt  18.1 KB
 
                
                    - 6 - Article Spinner (Intermediate)/4 -Article Spinner in Python (pt 1).vtt  18.1 KB
 
                
                    - 17 - Convolutional Neural Networks/2 -What is Convolution.vtt  18.0 KB
 
                
                    - 17 - Convolutional Neural Networks/subtitles/2 -What is Convolution.ko_KR.vtt  18.0 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/3 -Language Models (Review).vtt  18.0 KB
 
                
                    - 6 - Article Spinner (Intermediate)/subtitles/4 -Article Spinner in Python (pt 1).ko_KR.vtt  18.0 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/13 -CBOW in Tensorflow (Advanced).vtt  17.7 KB
 
                
                    - 12 - Topic Modeling/5 -Latent Dirichlet Allocation (LDA) - Intuition (Advanced).vtt  17.6 KB
 
                
                    - 12 - Topic Modeling/subtitles/5 -Latent Dirichlet Allocation (LDA) - Intuition (Advanced).ko_KR.vtt  17.6 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/6 -Tokenization.ko_KR.vtt  17.6 KB
 
                
                    - 20 - Setting Up Your Environment FAQ/2 -Anaconda Environment Setup.vtt  17.4 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/6 -Tokenization.vtt  17.3 KB
 
                
                    - 17 - Convolutional Neural Networks/subtitles/5 -Convolution on Color Images.ko_KR.vtt  17.3 KB
 
                
                    - 9 - Spam Detection/6 -Spam Detection in Python.vtt  16.8 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/5 -Count Vectorizer (Theory).vtt  16.8 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/10 -Count Vectorizer (Code).vtt  16.7 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/10 -Count Vectorizer (Code).ko_KR.vtt  16.6 KB
 
                
                    - 9 - Spam Detection/subtitles/6 -Spam Detection in Python.ko_KR.vtt  16.5 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/subtitles/3 -Language Models (Review).ko_KR.vtt  16.4 KB
 
                
                    - 15 - The Neuron/subtitles/2 -Fitting a Line.ko_KR.vtt  16.3 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/16 -How to Build TF-IDF From Scratch.ko_KR.vtt  16.2 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/16 -How to Build TF-IDF From Scratch.vtt  16.2 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/12 -TF-IDF (Theory).ko_KR.vtt  16.2 KB
 
                
                    - 15 - The Neuron/2 -Fitting a Line.vtt  16.1 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/12 -TF-IDF (Theory).vtt  16.0 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/5 -Count Vectorizer (Theory).ko_KR.vtt  15.9 KB
 
                
                    - 11 - Text Summarization/8 -TextRank in Python (Advanced).vtt  15.0 KB
 
                
                    - 9 - Spam Detection/4 -Aside Class Imbalance, ROC, AUC, and F1 Score (pt 1).vtt  14.7 KB
 
                
                    - 22 - Effective Learning Strategies for Machine Learning FAQ/3 -Machine Learning and AI Prerequisite Roadmap (pt 1).vtt  14.5 KB
 
                
                    - 11 - Text Summarization/subtitles/8 -TextRank in Python (Advanced).ko_KR.vtt  14.5 KB
 
                
                    - 5 - Markov Models (Intermediate)/3 -The Markov Model.vtt  14.3 KB
 
                
                    - 9 - Spam Detection/subtitles/4 -Aside Class Imbalance, ROC, AUC, and F1 Score (pt 1).ko_KR.vtt  14.2 KB
 
                
                    - 22 - Effective Learning Strategies for Machine Learning FAQ/subtitles/3 -Machine Learning and AI Prerequisite Roadmap (pt 1).ko_KR.vtt  14.1 KB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/subtitles/6 -How to use Github & Extra Coding Tips (Optional).ko_KR.vtt  13.9 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/8 -Stemming and Lemmatization.vtt  13.9 KB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/6 -How to use Github & Extra Coding Tips (Optional).vtt  13.8 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/8 -Stemming and Lemmatization.ko_KR.vtt  13.7 KB
 
                
                    - 5 - Markov Models (Intermediate)/subtitles/3 -The Markov Model.ko_KR.vtt  13.7 KB
 
                
                    - 1 - Introduction/1 -Introduction and Outline.vtt  13.7 KB
 
                
                    - 13 - Latent Semantic Analysis (Latent Semantic Indexing)/2 -SVD (Singular Value Decomposition) Intuition.vtt  13.5 KB
 
                
                    - 12 - Topic Modeling/subtitles/2 -Latent Dirichlet Allocation (LDA) - Essentials.ko_KR.vtt  13.5 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/15 -Word-to-Index Mapping.ko_KR.vtt  13.4 KB
 
                
                    - 1 - Introduction/subtitles/1 -Introduction and Outline.ko_KR.vtt  13.4 KB
 
                
                    - 11 - Text Summarization/subtitles/4 -Text Summarization in Python.ko_KR.vtt  13.4 KB
 
                
                    - 9 - Spam Detection/2 -Naive Bayes Intuition.vtt  13.3 KB
 
                
                    - 12 - Topic Modeling/2 -Latent Dirichlet Allocation (LDA) - Essentials.vtt  13.3 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/11 -Vector Similarity.vtt  13.3 KB
 
                
                    - 11 - Text Summarization/4 -Text Summarization in Python.vtt  13.2 KB
 
                
                    - 18 - Recurrent Neural Networks/7 -GRU and LSTM (pt 2).vtt  13.2 KB
 
                
                    - 9 - Spam Detection/subtitles/2 -Naive Bayes Intuition.ko_KR.vtt  13.1 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/3 -What is a Vector.vtt  13.0 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/8 -Text Preprocessing Code Preparation.vtt  13.0 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/subtitles/8 -Text Preprocessing Code Preparation.ko_KR.vtt  13.0 KB
 
                
                    - 20 - Setting Up Your Environment FAQ/subtitles/3 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.ko_KR.vtt  13.0 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/15 -Word-to-Index Mapping.vtt  12.9 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/3 -What is a Vector.ko_KR.vtt  12.9 KB
 
                
                    - 22 - Effective Learning Strategies for Machine Learning FAQ/1 -How to Succeed in this Course (Long Version).vtt  12.8 KB
 
                
                    - 13 - Latent Semantic Analysis (Latent Semantic Indexing)/subtitles/2 -SVD (Singular Value Decomposition) Intuition.ko_KR.vtt  12.8 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/21 -How To Do NLP In Other Languages.ko_KR.vtt  12.8 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/21 -How To Do NLP In Other Languages.vtt  12.7 KB
 
                
                    - 9 - Spam Detection/5 -Aside Class Imbalance, ROC, AUC, and F1 Score (pt 2).vtt  12.6 KB
 
                
                    - 22 - Effective Learning Strategies for Machine Learning FAQ/subtitles/1 -How to Succeed in this Course (Long Version).ko_KR.vtt  12.6 KB
 
                
                    - 20 - Setting Up Your Environment FAQ/3 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt  12.6 KB
 
                
                    - 15 - The Neuron/6 -How does a model learn.vtt  12.6 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/11 -Vector Similarity.ko_KR.vtt  12.5 KB
 
                
                    - 18 - Recurrent Neural Networks/subtitles/7 -GRU and LSTM (pt 2).ko_KR.vtt  12.5 KB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/3 -Proof that using Jupyter Notebook is the same as not using it.vtt  12.4 KB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/subtitles/3 -Proof that using Jupyter Notebook is the same as not using it.ko_KR.vtt  12.3 KB
 
                
                    - 15 - The Neuron/subtitles/6 -How does a model learn.ko_KR.vtt  12.2 KB
 
                
                    - 9 - Spam Detection/subtitles/5 -Aside Class Imbalance, ROC, AUC, and F1 Score (pt 2).ko_KR.vtt  12.2 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/9 -Stemming and Lemmatization Demo.vtt  12.1 KB
 
                
                    - 12 - Topic Modeling/7 -Non-Negative Matrix Factorization (NMF) Intuition.vtt  12.1 KB
 
                
                    - 5 - Markov Models (Intermediate)/8 -Building a Text Classifier (Code pt 2).vtt  12.1 KB
 
                
                    - 5 - Markov Models (Intermediate)/subtitles/8 -Building a Text Classifier (Code pt 2).ko_KR.vtt  12.1 KB
 
                
                    - 11 - Text Summarization/6 -TextRank - How It Really Works (Advanced).vtt  11.9 KB
 
                
                    - 12 - Topic Modeling/subtitles/6 -Topic Modeling with Latent Dirichlet Allocation (LDA) in Python.ko_KR.vtt  11.9 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/9 -Stemming and Lemmatization Demo.ko_KR.vtt  11.9 KB
 
                
                    - 12 - Topic Modeling/subtitles/7 -Non-Negative Matrix Factorization (NMF) Intuition.ko_KR.vtt  11.9 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/17 -Neural Word Embeddings.vtt  11.8 KB
 
                
                    - 5 - Markov Models (Intermediate)/9 -Language Model (Theory).vtt  11.7 KB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/2 -How to Code by Yourself (part 2).vtt  11.7 KB
 
                
                    - 12 - Topic Modeling/6 -Topic Modeling with Latent Dirichlet Allocation (LDA) in Python.vtt  11.6 KB
 
                
                    - 11 - Text Summarization/subtitles/6 -TextRank - How It Really Works (Advanced).ko_KR.vtt  11.6 KB
 
                
                    - 5 - Markov Models (Intermediate)/11 -Language Model (Code pt 1).vtt  11.6 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/17 -Neural Word Embeddings.ko_KR.vtt  11.5 KB
 
                
                    - 18 - Recurrent Neural Networks/3 -Simple RNN  Elman Unit (pt 2).vtt  11.4 KB
 
                
                    - 5 - Markov Models (Intermediate)/subtitles/9 -Language Model (Theory).ko_KR.vtt  11.3 KB
 
                
                    - 5 - Markov Models (Intermediate)/subtitles/11 -Language Model (Code pt 1).ko_KR.vtt  11.3 KB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/subtitles/2 -How to Code by Yourself (part 2).ko_KR.vtt  11.2 KB
 
                
                    - 18 - Recurrent Neural Networks/subtitles/3 -Simple RNN  Elman Unit (pt 2).ko_KR.vtt  11.2 KB
 
                
                    - 18 - Recurrent Neural Networks/subtitles/4 -RNN Code Preparation.ko_KR.vtt  11.1 KB
 
                
                    - 15 - The Neuron/5 -The Neuron.vtt  11.1 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/18 -Neural Word Embeddings Demo.vtt  11.1 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/10 -Embeddings.vtt  11.1 KB
 
                
                    - 18 - Recurrent Neural Networks/4 -RNN Code Preparation.vtt  11.1 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/subtitles/10 -Embeddings.ko_KR.vtt  11.0 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/2 -Forward Propagation.vtt  11.0 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/18 -Neural Word Embeddings Demo.ko_KR.vtt  10.9 KB
 
                
                    - 6 - Article Spinner (Intermediate)/5 -Article Spinner in Python (pt 2).vtt  10.9 KB
 
                
                    - 6 - Article Spinner (Intermediate)/subtitles/5 -Article Spinner in Python (pt 2).ko_KR.vtt  10.7 KB
 
                
                    - 15 - The Neuron/subtitles/4 -Text Classification in Tensorflow.ko_KR.vtt  10.5 KB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/4 -Get Your Hands Dirty, Practical Coding Experience, Data Links.vtt  10.5 KB
 
                
                    - 5 - Markov Models (Intermediate)/subtitles/7 -Building a Text Classifier (Code pt 1).ko_KR.vtt  10.4 KB
 
                
                    - 5 - Markov Models (Intermediate)/7 -Building a Text Classifier (Code pt 1).vtt  10.4 KB
 
                
                    - 15 - The Neuron/subtitles/5 -The Neuron.ko_KR.vtt  10.4 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/3 -The Geometrical Picture.vtt  10.4 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/subtitles/2 -Forward Propagation.ko_KR.vtt  10.3 KB
 
                
                    - 15 - The Neuron/4 -Text Classification in Tensorflow.vtt  10.3 KB
 
                
                    - 10 - Sentiment Analysis/6 -Sentiment Analysis in Python (pt 1).vtt  10.2 KB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/subtitles/4 -Get Your Hands Dirty, Practical Coding Experience, Data Links.ko_KR.vtt  10.2 KB
 
                
                    - 10 - Sentiment Analysis/subtitles/6 -Sentiment Analysis in Python (pt 1).ko_KR.vtt  10.2 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/subtitles/3 -The Geometrical Picture.ko_KR.vtt  10.2 KB
 
                
                    - 18 - Recurrent Neural Networks/2 -Simple RNN  Elman Unit (pt 1).vtt  10.2 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/5 -Multiclass Classification.vtt  9.9 KB
 
                
                    - 5 - Markov Models (Intermediate)/12 -Language Model (Code pt 2).vtt  9.9 KB
 
                
                    - 18 - Recurrent Neural Networks/subtitles/2 -Simple RNN  Elman Unit (pt 1).ko_KR.vtt  9.8 KB
 
                
                    - 5 - Markov Models (Intermediate)/subtitles/12 -Language Model (Code pt 2).ko_KR.vtt  9.8 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/subtitles/5 -Multiclass Classification.ko_KR.vtt  9.8 KB
 
                
                    - 11 - Text Summarization/5 -TextRank Intuition.vtt  9.6 KB
 
                
                    - 10 - Sentiment Analysis/4 -Logistic Regression Training and Interpretation (pt 3).vtt  9.5 KB
 
                
                    - 6 - Article Spinner (Intermediate)/1 -Article Spinning - Problem Description.vtt  9.5 KB
 
                
                    - 11 - Text Summarization/subtitles/5 -TextRank Intuition.ko_KR.vtt  9.4 KB
 
                
                    - 6 - Article Spinner (Intermediate)/subtitles/1 -Article Spinning - Problem Description.ko_KR.vtt  9.2 KB
 
                
                    - 19 - Course Conclusion/2 -Where is BERT, ChatGPT, GPT-4,.vtt  9.2 KB
 
                
                    - 5 - Markov Models (Intermediate)/4 -Probability Smoothing and Log-Probabilities.vtt  9.1 KB
 
                
                    - 10 - Sentiment Analysis/subtitles/4 -Logistic Regression Training and Interpretation (pt 3).ko_KR.vtt  9.0 KB
 
                
                    - 13 - Latent Semantic Analysis (Latent Semantic Indexing)/3 -LSA  LSI Applying SVD to NLP.vtt  9.0 KB
 
                
                    - 13 - Latent Semantic Analysis (Latent Semantic Indexing)/subtitles/3 -LSA  LSI Applying SVD to NLP.ko_KR.vtt  8.9 KB
 
                
                    - 13 - Latent Semantic Analysis (Latent Semantic Indexing)/subtitles/4 -Latent Semantic Analysis  Latent Semantic Indexing in Python.ko_KR.vtt  8.9 KB
 
                
                    - 18 - Recurrent Neural Networks/5 -RNNs Paying Attention to Shapes.vtt  8.9 KB
 
                
                    - 13 - Latent Semantic Analysis (Latent Semantic Indexing)/4 -Latent Semantic Analysis  Latent Semantic Indexing in Python.vtt  8.9 KB
 
                
                    - 19 - Course Conclusion/subtitles/2 -Where is BERT, ChatGPT, GPT-4,.ko_KR.vtt  8.7 KB
 
                
                    - 5 - Markov Models (Intermediate)/subtitles/4 -Probability Smoothing and Log-Probabilities.ko_KR.vtt  8.7 KB
 
                
                    - 10 - Sentiment Analysis/1 -Sentiment Analysis - Problem Description.vtt  8.7 KB
 
                
                    - 18 - Recurrent Neural Networks/subtitles/5 -RNNs Paying Attention to Shapes.ko_KR.vtt  8.6 KB
 
                
                    - 10 - Sentiment Analysis/subtitles/1 -Sentiment Analysis - Problem Description.ko_KR.vtt  8.6 KB
 
                
                    - 10 - Sentiment Analysis/subtitles/7 -Sentiment Analysis in Python (pt 2).ko_KR.vtt  8.6 KB
 
                
                    - 17 - Convolutional Neural Networks/7 -CNNs for Text.vtt  8.6 KB
 
                
                    - 10 - Sentiment Analysis/7 -Sentiment Analysis in Python (pt 2).vtt  8.5 KB
 
                
                    - 17 - Convolutional Neural Networks/subtitles/7 -CNNs for Text.ko_KR.vtt  8.4 KB
 
                
                    - 5 - Markov Models (Intermediate)/subtitles/5 -Building a Text Classifier (Theory).ko_KR.vtt  8.4 KB
 
                
                    - 15 - The Neuron/3 -Classification Code Preparation.vtt  8.4 KB
 
                
                    - 5 - Markov Models (Intermediate)/5 -Building a Text Classifier (Theory).vtt  8.3 KB
 
                
                    - 5 - Markov Models (Intermediate)/2 -The Markov Property.vtt  8.3 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/1 -ANN - Section Introduction.vtt  8.2 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/7 -Code pt 2.vtt  8.2 KB
 
                
                    - 15 - The Neuron/subtitles/3 -Classification Code Preparation.ko_KR.vtt  8.1 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/subtitles/7 -Code pt 2.ko_KR.vtt  8.1 KB
 
                
                    - 19 - Course Conclusion/subtitles/1 -What to Learn Next.ko_KR.vtt  8.0 KB
 
                
                    - 19 - Course Conclusion/1 -What to Learn Next.vtt  8.0 KB
 
                
                    - 5 - Markov Models (Intermediate)/10 -Language Model (Exercise Prompt).vtt  7.9 KB
 
                
                    - 9 - Spam Detection/subtitles/1 -Spam Detection - Problem Description.ko_KR.vtt  7.9 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/subtitles/1 -ANN - Section Introduction.ko_KR.vtt  7.9 KB
 
                
                    - 5 - Markov Models (Intermediate)/subtitles/2 -The Markov Property.ko_KR.vtt  7.8 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/10 -Code pt 5.vtt  7.8 KB
 
                
                    - 5 - Markov Models (Intermediate)/6 -Building a Text Classifier (Exercise Prompt).vtt  7.7 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/subtitles/10 -Code pt 5.ko_KR.vtt  7.7 KB
 
                
                    - 9 - Spam Detection/1 -Spam Detection - Problem Description.vtt  7.7 KB
 
                
                    - 5 - Markov Models (Intermediate)/subtitles/6 -Building a Text Classifier (Exercise Prompt).ko_KR.vtt  7.6 KB
 
                
                    - 5 - Markov Models (Intermediate)/subtitles/10 -Language Model (Exercise Prompt).ko_KR.vtt  7.6 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/15 -Aside How to Choose Hyperparameters (Optional).vtt  7.5 KB
 
                
                    - 10 - Sentiment Analysis/3 -Multiclass Logistic Regression (pt 2).vtt  7.4 KB
 
                
                    - 10 - Sentiment Analysis/subtitles/3 -Multiclass Logistic Regression (pt 2).ko_KR.vtt  7.3 KB
 
                
                    - 23 - Appendix  FAQ Finale/subtitles/2 -BONUS.ko_KR.vtt  7.3 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/subtitles/15 -Aside How to Choose Hyperparameters (Optional).ko_KR.vtt  7.3 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/14 -Section Conclusion.vtt  7.3 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/subtitles/14 -Section Conclusion.ko_KR.vtt  7.1 KB
 
                
                    - 8 - Machine Learning Models (Introduction)/subtitles/1 -Machine Learning Models (Introduction).ko_KR.vtt  7.1 KB
 
                
                    - 17 - Convolutional Neural Networks/4 -What is Convolution (Weight Sharing).vtt  7.0 KB
 
                
                    - 17 - Convolutional Neural Networks/subtitles/4 -What is Convolution (Weight Sharing).ko_KR.vtt  6.9 KB
 
                
                    - 8 - Machine Learning Models (Introduction)/1 -Machine Learning Models (Introduction).vtt  6.9 KB
 
                
                    - 11 - Text Summarization/9 -Text Summarization in Python - The Easy Way (Beginner).vtt  6.9 KB
 
                
                    - 6 - Article Spinner (Intermediate)/subtitles/6 -Case Study Article Spinning Gone Wrong.ko_KR.vtt  6.7 KB
 
                
                    - 6 - Article Spinner (Intermediate)/3 -Article Spinner Exercise Prompt.vtt  6.7 KB
 
                
                    - 11 - Text Summarization/subtitles/9 -Text Summarization in Python - The Easy Way (Beginner).ko_KR.vtt  6.7 KB
 
                
                    - 6 - Article Spinner (Intermediate)/6 -Case Study Article Spinning Gone Wrong.vtt  6.7 KB
 
                
                    - 6 - Article Spinner (Intermediate)/subtitles/3 -Article Spinner Exercise Prompt.ko_KR.vtt  6.7 KB
 
                
                    - 11 - Text Summarization/1 -Text Summarization Section Introduction.vtt  6.7 KB
 
                
                    - 13 - Latent Semantic Analysis (Latent Semantic Indexing)/subtitles/5 -LSA  LSI Exercises.ko_KR.vtt  6.5 KB
 
                
                    - 13 - Latent Semantic Analysis (Latent Semantic Indexing)/5 -LSA  LSI Exercises.vtt  6.5 KB
 
                
                    - 11 - Text Summarization/2 -Text Summarization Using Vectors.vtt  6.4 KB
 
                
                    - 1 - Introduction/2 -Are You Beginner, Intermediate, or Advanced All are OK!.vtt  6.4 KB
 
                
                    - 1 - Introduction/subtitles/2 -Are You Beginner, Intermediate, or Advanced All are OK!.ko_KR.vtt  6.3 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/11 -Code pt 6.vtt  6.3 KB
 
                
                    - 11 - Text Summarization/subtitles/2 -Text Summarization Using Vectors.ko_KR.vtt  6.3 KB
 
                
                    - 11 - Text Summarization/subtitles/1 -Text Summarization Section Introduction.ko_KR.vtt  6.3 KB
 
                
                    - 2 - Getting Set Up/subtitles/1 -Where To Get the Code.ko_KR.vtt  6.2 KB
 
                
                    - 17 - Convolutional Neural Networks/3 -What is Convolution (Pattern Matching).vtt  6.1 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/subtitles/11 -Code pt 6.ko_KR.vtt  6.0 KB
 
                
                    - 14 - Deep Learning (Introduction)/1 -Deep Learning Introduction (Intermediate-Advanced).vtt  6.0 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/5 -Code Preparation.vtt  6.0 KB
 
                
                    - 2 - Getting Set Up/1 -Where To Get the Code.vtt  6.0 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/1 -Section Introduction.vtt  5.9 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/2 -Basic Definitions for NLP.vtt  5.8 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/subtitles/1 -Section Introduction.ko_KR.vtt  5.8 KB
 
                
                    - 17 - Convolutional Neural Networks/subtitles/3 -What is Convolution (Pattern Matching).ko_KR.vtt  5.8 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/subtitles/5 -Code Preparation.ko_KR.vtt  5.8 KB
 
                
                    - 20 - Setting Up Your Environment FAQ/1 -Pre-Installation Check.vtt  5.7 KB
 
                
                    - 14 - Deep Learning (Introduction)/subtitles/1 -Deep Learning Introduction (Intermediate-Advanced).ko_KR.vtt  5.7 KB
 
                
                    - 20 - Setting Up Your Environment FAQ/subtitles/1 -Pre-Installation Check.ko_KR.vtt  5.7 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/2 -Basic Definitions for NLP.ko_KR.vtt  5.7 KB
 
                
                    - 18 - Recurrent Neural Networks/1 -RNN - Section Introduction.vtt  5.6 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/subtitles/8 -Code pt 3.ko_KR.vtt  5.6 KB
 
                
                    - 4 - Probabilistic Models (Introduction)/1 -Probabilistic Models (Introduction).vtt  5.5 KB
 
                
                    - 18 - Recurrent Neural Networks/subtitles/1 -RNN - Section Introduction.ko_KR.vtt  5.5 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/7 -Stopwords.ko_KR.vtt  5.5 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/7 -Stopwords.vtt  5.5 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/9 -Text Preprocessing in Tensorflow.vtt  5.5 KB
 
                
                    - 4 - Probabilistic Models (Introduction)/subtitles/1 -Probabilistic Models (Introduction).ko_KR.vtt  5.5 KB
 
                
                    - 18 - Recurrent Neural Networks/subtitles/10 -Named Entity Recognition (NER) in Tensorflow.ko_KR.vtt  5.4 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/8 -Code pt 3.vtt  5.4 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/subtitles/6 -ANN Code Preparation.ko_KR.vtt  5.4 KB
 
                
                    - 18 - Recurrent Neural Networks/10 -Named Entity Recognition (NER) in Tensorflow.vtt  5.4 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/subtitles/9 -Text Preprocessing in Tensorflow.ko_KR.vtt  5.3 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/6 -ANN Code Preparation.vtt  5.3 KB
 
                
                    - 17 - Convolutional Neural Networks/1 -CNN - Section Introduction.vtt  5.2 KB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/subtitles/5 -Where To Get the Code Troubleshooting.ko_KR.vtt  5.1 KB
 
                
                    - 17 - Convolutional Neural Networks/subtitles/1 -CNN - Section Introduction.ko_KR.vtt  5.1 KB
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/5 -Where To Get the Code Troubleshooting.vtt  5.1 KB
 
                
                    - 18 - Recurrent Neural Networks/subtitles/8 -RNN for Text Classification in Tensorflow.ko_KR.vtt  5.0 KB
 
                
                    - 13 - Latent Semantic Analysis (Latent Semantic Indexing)/subtitles/1 -LSA  LSI Section Introduction.ko_KR.vtt  4.9 KB
 
                
                    - 18 - Recurrent Neural Networks/8 -RNN for Text Classification in Tensorflow.vtt  4.9 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/11 -CBOW (Advanced).vtt  4.6 KB
 
                
                    - 6 - Article Spinner (Intermediate)/2 -Article Spinning - N-Gram Approach.vtt  4.6 KB
 
                
                    - 13 - Latent Semantic Analysis (Latent Semantic Indexing)/1 -LSA  LSI Section Introduction.vtt  4.6 KB
 
                
                    - 17 - Convolutional Neural Networks/subtitles/8 -Convolutional Neural Network for NLP in Tensorflow.ko_KR.vtt  4.5 KB
 
                
                    - 12 - Topic Modeling/subtitles/3 -LDA - Code Preparation.ko_KR.vtt  4.5 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/subtitles/11 -CBOW (Advanced).ko_KR.vtt  4.5 KB
 
                
                    - 10 - Sentiment Analysis/5 -Sentiment Analysis - Exercise Prompt.vtt  4.5 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/1 -Vector Models & Text Preprocessing Intro.ko_KR.vtt  4.5 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/subtitles/7 -Text Classification ANN in Tensorflow.ko_KR.vtt  4.4 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/7 -Text Classification ANN in Tensorflow.vtt  4.4 KB
 
                
                    - 6 - Article Spinner (Intermediate)/subtitles/2 -Article Spinning - N-Gram Approach.ko_KR.vtt  4.4 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/1 -Vector Models & Text Preprocessing Intro.vtt  4.4 KB
 
                
                    - 17 - Convolutional Neural Networks/8 -Convolutional Neural Network for NLP in Tensorflow.vtt  4.4 KB
 
                
                    - 10 - Sentiment Analysis/subtitles/5 -Sentiment Analysis - Exercise Prompt.ko_KR.vtt  4.4 KB
 
                
                    - 12 - Topic Modeling/subtitles/8 -Topic Modeling with Non-Negative Matrix Factorization (NMF) in Python.ko_KR.vtt  4.4 KB
 
                
                    - 12 - Topic Modeling/3 -LDA - Code Preparation.vtt  4.3 KB
 
                
                    - 12 - Topic Modeling/8 -Topic Modeling with Non-Negative Matrix Factorization (NMF) in Python.vtt  4.3 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/subtitles/9 -Code pt 4.ko_KR.vtt  4.3 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/19 -Vector Models & Text Preprocessing Summary.ko_KR.vtt  4.3 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/9 -Code pt 4.vtt  4.3 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/19 -Vector Models & Text Preprocessing Summary.vtt  4.3 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/2 -Ciphers.vtt  4.2 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/22 -Suggestion Box.vtt  4.1 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/subtitles/2 -Ciphers.ko_KR.vtt  4.1 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/22 -Suggestion Box.ko_KR.vtt  4.0 KB
 
                
                    - 2 - Getting Set Up/2 -How to Succeed in This Course.vtt  3.9 KB
 
                
                    - 11 - Text Summarization/10 -Text Summarization Section Summary.vtt  3.9 KB
 
                
                    - 2 - Getting Set Up/subtitles/2 -How to Succeed in This Course.ko_KR.vtt  3.9 KB
 
                
                    - 12 - Topic Modeling/subtitles/1 -Topic Modeling Section Introduction.ko_KR.vtt  3.8 KB
 
                
                    - 11 - Text Summarization/subtitles/10 -Text Summarization Section Summary.ko_KR.vtt  3.8 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/6 -Code pt 1.vtt  3.7 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/subtitles/6 -Code pt 1.ko_KR.vtt  3.7 KB
 
                
                    - 18 - Recurrent Neural Networks/subtitles/11 -Exercise Return to CNNs (Advanced).ko_KR.vtt  3.7 KB
 
                
                    - 12 - Topic Modeling/1 -Topic Modeling Section Introduction.vtt  3.6 KB
 
                
                    - 18 - Recurrent Neural Networks/11 -Exercise Return to CNNs (Advanced).vtt  3.6 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/12 -Cipher Decryption - Additional Discussion.vtt  3.6 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/subtitles/13 -Real-World Application Acoustic Keylogger.ko_KR.vtt  3.6 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/13 -Real-World Application Acoustic Keylogger.vtt  3.5 KB
 
                
                    - 7 - Cipher Decryption (Advanced)/subtitles/12 -Cipher Decryption - Additional Discussion.ko_KR.vtt  3.5 KB
 
                
                    - 5 - Markov Models (Intermediate)/13 -Markov Models Section Summary.vtt  3.5 KB
 
                
                    - 5 - Markov Models (Intermediate)/subtitles/13 -Markov Models Section Summary.ko_KR.vtt  3.4 KB
 
                
                    - 23 - Appendix  FAQ Finale/subtitles/1 -What is the Appendix.ko_KR.vtt  3.4 KB
 
                
                    - 23 - Appendix  FAQ Finale/1 -What is the Appendix.vtt  3.3 KB
 
                
                    - 2 - Getting Set Up/3 -Temporary 403 Errors.vtt  3.2 KB
 
                
                    - 2 - Getting Set Up/subtitles/3 -Temporary 403 Errors.ko_KR.vtt  3.2 KB
 
                
                    - 5 - Markov Models (Intermediate)/subtitles/1 -Markov Models Section Introduction.ko_KR.vtt  3.2 KB
 
                
                    - 5 - Markov Models (Intermediate)/1 -Markov Models Section Introduction.vtt  3.1 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/13 -(Interactive) Recommender Exercise Prompt.ko_KR.vtt  3.0 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/13 -(Interactive) Recommender Exercise Prompt.vtt  2.8 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/4 -Bag of Words.vtt  2.8 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/4 -Bag of Words.ko_KR.vtt  2.7 KB
 
                
                    - 15 - The Neuron/1 -The Neuron - Section Introduction.vtt  2.6 KB
 
                
                    - 9 - Spam Detection/subtitles/3 -Spam Detection - Exercise Prompt.ko_KR.vtt  2.5 KB
 
                
                    - 15 - The Neuron/subtitles/1 -The Neuron - Section Introduction.ko_KR.vtt  2.4 KB
 
                
                    - 12 - Topic Modeling/subtitles/4 -LDA - Maybe Useful Picture (Optional).ko_KR.vtt  2.3 KB
 
                
                    - 9 - Spam Detection/3 -Spam Detection - Exercise Prompt.vtt  2.3 KB
 
                
                    - 12 - Topic Modeling/4 -LDA - Maybe Useful Picture (Optional).vtt  2.2 KB
 
                
                    - 11 - Text Summarization/subtitles/3 -Text Summarization Exercise Prompt.ko_KR.vtt  2.1 KB
 
                
                    - 11 - Text Summarization/3 -Text Summarization Exercise Prompt.vtt  2.0 KB
 
                
                    - 18 - Recurrent Neural Networks/12 -RNN - Section Summary.vtt  2.0 KB
 
                
                    - 18 - Recurrent Neural Networks/subtitles/12 -RNN - Section Summary.ko_KR.vtt  2.0 KB
 
                
                    - 15 - The Neuron/subtitles/7 -The Neuron - Section Summary.ko_KR.vtt  2.0 KB
 
                
                    - 15 - The Neuron/7 -The Neuron - Section Summary.vtt  2.0 KB
 
                
                    - 12 - Topic Modeling/subtitles/9 -Topic Modeling Section Summary.ko_KR.vtt  1.9 KB
 
                
                    - 12 - Topic Modeling/9 -Topic Modeling Section Summary.vtt  1.8 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/14 -ANN - Section Summary.vtt  1.7 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/subtitles/14 -ANN - Section Summary.ko_KR.vtt  1.6 KB
 
                
                    - 11 - Text Summarization/subtitles/7 -TextRank Exercise Prompt (Advanced).ko_KR.vtt  1.6 KB
 
                
                    - 11 - Text Summarization/7 -TextRank Exercise Prompt (Advanced).vtt  1.5 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/20 -Text Summarization Preview.vtt  1.5 KB
 
                
                    - 3 - Vector Models and Text Preprocessing/subtitles/20 -Text Summarization Preview.ko_KR.vtt  1.5 KB
 
                
                    - 17 - Convolutional Neural Networks/9 -CNN - Section Summary.vtt  1.5 KB
 
                
                    - 17 - Convolutional Neural Networks/subtitles/9 -CNN - Section Summary.ko_KR.vtt  1.5 KB
 
                
                    - 16 - Feedforward Artificial Neural Networks/subtitles/12 -CBOW Exercise Prompt.ko_KR.vtt  907 bytes
 
                
                    - 16 - Feedforward Artificial Neural Networks/12 -CBOW Exercise Prompt.vtt  883 bytes
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/4 -Data Links.url  119 bytes
 
                
                    - 2 - Getting Set Up/1 -Github Link.url  101 bytes
 
                
                    - 21 - Extra Help With Python Coding for Beginners FAQ/4 -Github Link.url  101 bytes
 
                
                    - 2 - Getting Set Up/1 -Code Link.url  87 bytes
 
                
            
        
     
    Download Torrent
    
    Related Resources
    
    Copyright Infringement
    
        If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.