[Udemy] Practical AI with Python and Reinforcement Learning (07.2021)
    
    File List
    
        
            
                
                    - 11 Classical Q Learning/019 Q-Learning Exercise Project - Solutions.mp4  177.1 MB
- 10 Open AI Gym Overview/003 OpenAI Gym - Documentation Tour.mp4  146.5 MB
- 07 Artificial Neural Network and TensorFlow Basics/027 Tensorboard.mp4  144.2 MB
- 07 Artificial Neural Network and TensorFlow Basics/020 Keras Project Solution - Exploratoy Data Analysis.mp4  143.7 MB
- 10 Open AI Gym Overview/005 OpenAI Gym - Working with the Environment.mp4  137.5 MB
- 07 Artificial Neural Network and TensorFlow Basics/012 Keras Regression - Exploratory Data Analysis.mp4  137.0 MB
- 07 Artificial Neural Network and TensorFlow Basics/023 Keras Project Solutions - Categorical Data.mp4  125.0 MB
- 04 Matplotlib and Visualization Overview/011 Matplotlib Exercise Questions - Solutions.mp4  123.2 MB
- 10 Open AI Gym Overview/006 OpenAI Gym - Agent Interacting with the Environment.mp4  116.4 MB
- 06 Pandas and Scikit-Learn Crash Course/004 Pandas - DataFrames - Part One.mp4  114.4 MB
- 07 Artificial Neural Network and TensorFlow Basics/017 Keras Classification - Overfitting and Evaluation.mp4  111.2 MB
- 03 Numpy Basics Overview/002 NumPy Arrays.mp4  109.6 MB
- 11 Classical Q Learning/017 Continuous Q-Learning - Part Six - Training and Usage.mp4  108.8 MB
- 11 Classical Q Learning/010 Q-Learning Implementation - Part Four - Agent Training.mp4  107.0 MB
- 12 Deep Q-Learning/011 DQN Manual Implementation - Part Four - Model Training.mp4  106.9 MB
- 08 Convolutional Neural Networks with TensorFlow/007 CNN on MNIST - Creating and Training the Model.mp4  98.9 MB
- 02 Course Set-Up and Installation Procedures/001 Anaconda and Jupyter Notebook Install and Setup.mp4  98.8 MB
- 07 Artificial Neural Network and TensorFlow Basics/021 Keras Project Solutions - Missing Data - Part One.mp4  96.8 MB
- 06 Pandas and Scikit-Learn Crash Course/007 Pandas - DataFrames - Part Four.mp4  96.7 MB
- 04 Matplotlib and Visualization Overview/006 Matplotlib - Subplots Functionality.mp4  96.2 MB
- 12 Deep Q-Learning/006 DQN Theory and Intuition - Part Four - Experience Replay.mp4  96.0 MB
- 11 Classical Q Learning/009 Q-Learning Implementation - Part Three - Update Functions.mp4  92.9 MB
- 08 Convolutional Neural Networks with TensorFlow/014 CNN on Real Image Files - Creating the Model.mp4  90.5 MB
- 06 Pandas and Scikit-Learn Crash Course/006 Pandas - DataFrames - Part Three.mp4  89.5 MB
- 12 Deep Q-Learning/005 DQN Theory and Intuition - Part Three - Feedback and Function Approximation.mp4  88.3 MB
- 11 Classical Q Learning/007 Q-Learning Implementation - Part One - Environment Setup.mp4  88.2 MB
- 08 Convolutional Neural Networks with TensorFlow/013 CNN on Real Image Files - Data Generation.mp4  87.7 MB
- 11 Classical Q Learning/015 Continuous Q-Learning - Part Four - Discretization Implementation.mp4  86.2 MB
- 11 Classical Q Learning/013 Continuous Q-Learning Theory - Part Two- Q-Table Shape.mp4  85.7 MB
- 07 Artificial Neural Network and TensorFlow Basics/022 Keras Project Solutions - Dealing with Missing Data - Part Two.mp4  85.4 MB
- 12 Deep Q-Learning/010 DQN Manual Implementation - Part Three - Hyperparameters and Functions.mp4  84.7 MB
- 07 Artificial Neural Network and TensorFlow Basics/010 Keras Syntax - Creating and Training the Model.mp4  84.3 MB
- 12 Deep Q-Learning/015 DQN - Keras-RL2 - Part Four - DQN Agent.mp4  84.1 MB
- 12 Deep Q-Learning/007 DQN Theory and Intuition - Part Five - Mapping Key Ideas to Code.mp4  81.5 MB
- 04 Matplotlib and Visualization Overview/008 Matplotlib Styling -  Colors and Styles.mp4  81.2 MB
- 07 Artificial Neural Network and TensorFlow Basics/019 Keras Project Notebook Exercise Overview.mp4  80.6 MB
- 08 Convolutional Neural Networks with TensorFlow/012 CNN on Real Image Files - Reading in the Data.mp4  80.4 MB
- 11 Classical Q Learning/003 Q-Learning Theory - Part One - Table Intuition.mp4  77.5 MB
- 06 Pandas and Scikit-Learn Crash Course/009 Scikit-Learn - Using Metrics.mp4  77.3 MB
- 07 Artificial Neural Network and TensorFlow Basics/013 Keras Regression - EDA Continued.mp4  76.3 MB
- 07 Artificial Neural Network and TensorFlow Basics/006 Cost Functions and Gradient Descent.mp4  76.0 MB
- 08 Convolutional Neural Networks with TensorFlow/002 Image Filters and Kernels.mp4  72.3 MB
- 05 Machine Learning, Deep Learning, and Reinforcement Learning/002 Supervised Machine Learning Process.mp4  71.7 MB
- 02 Course Set-Up and Installation Procedures/003 Environment Setup Walkthrough.mp4  71.2 MB
- 10 Open AI Gym Overview/002 OpenAI Overview and History.mp4  69.7 MB
- 07 Artificial Neural Network and TensorFlow Basics/015 Keras Regression - Model Evaluation and Predictions.mp4  68.9 MB
- 11 Classical Q Learning/018 Q-Learning Exercise Project.mp4  66.3 MB
- 07 Artificial Neural Network and TensorFlow Basics/011 Keras Syntax - Model Evaluation.mp4  64.8 MB
- 08 Convolutional Neural Networks with TensorFlow/009 CNN on CIFAR-10 - The Data.mp4  64.3 MB
- 07 Artificial Neural Network and TensorFlow Basics/026 Keras Project Solutions - Model Evaluation.mp4  63.2 MB
- 12 Deep Q-Learning/017 DQN - Exercise Solutions.mp4  62.5 MB
- 07 Artificial Neural Network and TensorFlow Basics/004 Activation Functions.mp4  62.5 MB
- 09 Reinforcement Learning - Core Concepts/002 Agents, Environments, and Policy.mp4  62.3 MB
- 06 Pandas and Scikit-Learn Crash Course/008 Scikit-Learn - Using Train-Test-Split.mp4  60.5 MB
- 08 Convolutional Neural Networks with TensorFlow/006 CNN on MNIST - The Data.mp4  59.8 MB
- 04 Matplotlib and Visualization Overview/004 Matplotlib - Implementing Figures and Axes.mp4  59.0 MB
- 11 Classical Q Learning/006 Q-Learning Theory - Part Four - Programmatic Q Updates.mp4  58.2 MB
- 08 Convolutional Neural Networks with TensorFlow/003 Convolutional Layers.mp4  58.0 MB
- 07 Artificial Neural Network and TensorFlow Basics/007 Backpropagation.mp4  57.9 MB
- 09 Reinforcement Learning - Core Concepts/003 Rewards, Discount Factors, and Bellman Equation.mp4  56.7 MB
- 11 Classical Q Learning/011 Q-Learning Implementation - Part Five - Visualization and Utilization.mp4  56.6 MB
- 07 Artificial Neural Network and TensorFlow Basics/016 Keras Classification - EDA and Preprocessing.mp4  56.2 MB
- 08 Convolutional Neural Networks with TensorFlow/017 CNN Exercise Project Solutions.mp4  55.9 MB
- 01 Course Overview/002 COURSE_NOTEBOOKS.zip  55.3 MB
- 02 Course Set-Up and Installation Procedures/004 COURSE_NOTEBOOKS.zip  55.3 MB
- 05 Machine Learning, Deep Learning, and Reinforcement Learning/001 What is Machine Learning, Deep Learning, and Artificial Intelligence_.mp4  54.6 MB
- 11 Classical Q Learning/012 Continuous Q-Learning Theory - Part One - Environment Setup.mp4  54.4 MB
- 11 Classical Q Learning/004 Q-Learning Theory - Part Two - Q Target Equation.mp4  54.3 MB
- 06 Pandas and Scikit-Learn Crash Course/005 Pandas - DataFrames - Part Two.mp4  54.0 MB
- 12 Deep Q-Learning/012 DQN - Keras-RL2 - Part One - Overview.mp4  53.7 MB
- 04 Matplotlib and Visualization Overview/002 Matplotlib Basics.mp4  53.6 MB
- 04 Matplotlib and Visualization Overview/010 Matplotlib Exercise Questions Overview.mp4  50.7 MB
- 07 Artificial Neural Network and TensorFlow Basics/009 Keras Syntax - Preparing the Data.mp4  50.3 MB
- 03 Numpy Basics Overview/004 Numpy Operations - Part Two.mp4  48.6 MB
- 03 Numpy Basics Overview/006 Numpy Exercise Solutions.mp4  48.6 MB
- 07 Artificial Neural Network and TensorFlow Basics/002 Perceptron Model.mp4  48.0 MB
- 07 Artificial Neural Network and TensorFlow Basics/014 Keras Regression - Data Preprocessing and Model Creation.mp4  47.0 MB
- 08 Convolutional Neural Networks with TensorFlow/015 CNN on Real Image Files - Model Evaluation.mp4  47.0 MB
- 12 Deep Q-Learning/004 DQN Theory and Intuition - Part Two - Neural Networks for RL.mp4  46.5 MB
- 03 Numpy Basics Overview/003 Numpy Operations - Part One.mp4  46.4 MB
- 07 Artificial Neural Network and TensorFlow Basics/005 Multi-Class Classification Considerations.mp4  46.1 MB
- 06 Pandas and Scikit-Learn Crash Course/003 Pandas - Series Part Two.mp4  45.5 MB
- 11 Classical Q Learning/016 Continuous Q-Learning - Part Five - Functions and Hyperparameters.mp4  45.4 MB
- 08 Convolutional Neural Networks with TensorFlow/010 CNN on CIFAR-10 - Evaluating the Model.mp4  45.4 MB
- 01 Course Overview/002 Course Curriculum Overview.mp4  44.0 MB
- 11 Classical Q Learning/008 Q-Learning Implementation - Part Two - Table and Hyperparameters.mp4  43.1 MB
- 01 Course Overview/003 Course Success and Overview.mp4  42.1 MB
- 04 Matplotlib and Visualization Overview/009 Advanced Matplotlib Commands (Optional).mp4  40.5 MB
- 06 Pandas and Scikit-Learn Crash Course/002 Pandas - Series Part One.mp4  38.7 MB
- 08 Convolutional Neural Networks with TensorFlow/008 CNN on MNIST - Model Evaluation.mp4  38.5 MB
- 11 Classical Q Learning/005 Q-Learning Theory - Part Three - Q-Update Equation.mp4  37.5 MB
- 10 Open AI Gym Overview/004 OpenAI Gym - Environment Key Ideas.mp4  37.3 MB
- 07 Artificial Neural Network and TensorFlow Basics/003 Neural Networks.mp4  35.9 MB
- 04 Matplotlib and Visualization Overview/007 Matplotlib Styling - Legends.mp4  34.1 MB
- 12 Deep Q-Learning/009 DQN Manual Implementation - Part Two - Artificial Neural Network.mp4  31.9 MB
- 07 Artificial Neural Network and TensorFlow Basics/025 Keras Project Solutions- Creating and Training the Model.mp4  29.8 MB
- 12 Deep Q-Learning/002 History of DQN.mp4  28.8 MB
- 12 Deep Q-Learning/016 DQN - Exercise Overview.mp4  28.3 MB
- 08 Convolutional Neural Networks with TensorFlow/011 Downloading Data Set for Real Image Lectures.mp4  28.1 MB
- 08 Convolutional Neural Networks with TensorFlow/004 Pooling Layers.mp4  27.6 MB
- 09 Reinforcement Learning - Core Concepts/004 Deterministic vs. Stochastic Processes.mp4  27.3 MB
- 11 Classical Q Learning/002 History of Q-Learning.mp4  27.1 MB
- 12 Deep Q-Learning/014 DQN - Keras-RL2 - Part Three - Creating the ANN.mp4  26.0 MB
- 04 Matplotlib and Visualization Overview/003 Matplotlib - Understanding the Figure Object.mp4  25.8 MB
- 08 Convolutional Neural Networks with TensorFlow/005 MNIST Data Set Overview.mp4  24.7 MB
- 11 Classical Q Learning/014 Continuous Q-Learning Theory - Part Three - Discretization Theory.mp4  24.7 MB
- 07 Artificial Neural Network and TensorFlow Basics/024 Keras Project Solutions - Data Preprocessing.mp4  24.0 MB
- 12 Deep Q-Learning/003 DQN Theory and Intuition - Part One - Review of Core RL Ideas.mp4  23.9 MB
- 04 Matplotlib and Visualization Overview/005 Matplotlib - Figure Parameters.mp4  23.8 MB
- 11 Classical Q Learning/001 Introduction to Classical Q-Learning Overview.mp4  22.6 MB
- 04 Matplotlib and Visualization Overview/001 Introduction to Matplotlib.mp4  21.6 MB
- 12 Deep Q-Learning/008 DQN Manual Implementation - Part One - Imports and Environment.mp4  20.8 MB
- 08 Convolutional Neural Networks with TensorFlow/016 CNN Exercise Project Overview.mp4  17.8 MB
- 12 Deep Q-Learning/013 DQN - Keras-RL2 - Part Two - Imports and Environment.mp4  14.0 MB
- 03 Numpy Basics Overview/005 Numpy Exercise Overview.mp4  11.5 MB
- 03 Numpy Basics Overview/001 Introduction to Numpy Section.mp4  11.3 MB
- 09 Reinforcement Learning - Core Concepts/001 Overview of Core Concepts for Reinforcement Learning Section.mp4  10.7 MB
- 07 Artificial Neural Network and TensorFlow Basics/008 TensorFlow vs. Keras Explained.mp4  10.4 MB
- 12 Deep Q-Learning/001 DQN Section Overview.mp4  10.1 MB
- 07 Artificial Neural Network and TensorFlow Basics/001 Introduction to Artificial Neural Networks.mp4  9.7 MB
- 07 Artificial Neural Network and TensorFlow Basics/018 Keras Classification - Overview of Project Options.mp4  7.9 MB
- 08 Convolutional Neural Networks with TensorFlow/001 Convolutional Neural Networks Section Overview.mp4  7.5 MB
- 10 Open AI Gym Overview/001 Introduction to OpenAI Gym Section.mp4  6.1 MB
- 12 Deep Q-Learning/110 DQNNaturePaper.pdf  4.4 MB
- 10 Open AI Gym Overview/005 OpenAI Gym - Working with the Environment.en.srt  43.5 KB
- 11 Classical Q Learning/019 Q-Learning Exercise Project - Solutions.en.srt  33.5 KB
- 03 Numpy Basics Overview/002 NumPy Arrays.en.srt  33.1 KB
- 10 Open AI Gym Overview/006 OpenAI Gym - Agent Interacting with the Environment.en.srt  32.0 KB
- 11 Classical Q Learning/017 Continuous Q-Learning - Part Six - Training and Usage.en.srt  31.7 KB
- 12 Deep Q-Learning/005 DQN Theory and Intuition - Part Three - Feedback and Function Approximation.en.srt  31.4 KB
- 07 Artificial Neural Network and TensorFlow Basics/027 Tensorboard.en.srt  30.7 KB
- 06 Pandas and Scikit-Learn Crash Course/004 Pandas - DataFrames - Part One.en.srt  30.1 KB
- 07 Artificial Neural Network and TensorFlow Basics/020 Keras Project Solution - Exploratoy Data Analysis.en.srt  30.0 KB
- 12 Deep Q-Learning/006 DQN Theory and Intuition - Part Four - Experience Replay.en.srt  29.8 KB
- 04 Matplotlib and Visualization Overview/006 Matplotlib - Subplots Functionality.en.srt  29.7 KB
- 07 Artificial Neural Network and TensorFlow Basics/006 Cost Functions and Gradient Descent.en.srt  28.7 KB
- 07 Artificial Neural Network and TensorFlow Basics/012 Keras Regression - Exploratory Data Analysis.en.srt  28.0 KB
- 12 Deep Q-Learning/010 DQN Manual Implementation - Part Three - Hyperparameters and Functions.en.srt  27.8 KB
- 07 Artificial Neural Network and TensorFlow Basics/023 Keras Project Solutions - Categorical Data.en.srt  27.2 KB
- 11 Classical Q Learning/015 Continuous Q-Learning - Part Four - Discretization Implementation.en.srt  27.0 KB
- 11 Classical Q Learning/010 Q-Learning Implementation - Part Four - Agent Training.en.srt  26.8 KB
- 08 Convolutional Neural Networks with TensorFlow/007 CNN on MNIST - Creating and Training the Model.en.srt  26.0 KB
- 12 Deep Q-Learning/011 DQN Manual Implementation - Part Four - Model Training.en.srt  25.7 KB
- 04 Matplotlib and Visualization Overview/011 Matplotlib Exercise Questions - Solutions.en.srt  25.6 KB
- 11 Classical Q Learning/009 Q-Learning Implementation - Part Three - Update Functions.en.srt  25.6 KB
- 11 Classical Q Learning/013 Continuous Q-Learning Theory - Part Two- Q-Table Shape.en.srt  25.5 KB
- 07 Artificial Neural Network and TensorFlow Basics/017 Keras Classification - Overfitting and Evaluation.en.srt  25.3 KB
- 08 Convolutional Neural Networks with TensorFlow/013 CNN on Real Image Files - Data Generation.en.srt  24.3 KB
- 11 Classical Q Learning/007 Q-Learning Implementation - Part One - Environment Setup.en.srt  24.1 KB
- 12 Deep Q-Learning/007 DQN Theory and Intuition - Part Five - Mapping Key Ideas to Code.en.srt  24.0 KB
- 11 Classical Q Learning/003 Q-Learning Theory - Part One - Table Intuition.en.srt  23.4 KB
- 10 Open AI Gym Overview/003 OpenAI Gym - Documentation Tour.en.srt  23.2 KB
- 12 Deep Q-Learning/015 DQN - Keras-RL2 - Part Four - DQN Agent.en.srt  23.1 KB
- 06 Pandas and Scikit-Learn Crash Course/009 Scikit-Learn - Using Metrics.en.srt  22.5 KB
- 02 Course Set-Up and Installation Procedures/001 Anaconda and Jupyter Notebook Install and Setup.en.srt  22.3 KB
- 08 Convolutional Neural Networks with TensorFlow/003 Convolutional Layers.en.srt  22.1 KB
- 06 Pandas and Scikit-Learn Crash Course/007 Pandas - DataFrames - Part Four.en.srt  21.9 KB
- 04 Matplotlib and Visualization Overview/008 Matplotlib Styling -  Colors and Styles.en.srt  21.8 KB
- 07 Artificial Neural Network and TensorFlow Basics/007 Backpropagation.en.srt  21.8 KB
- 07 Artificial Neural Network and TensorFlow Basics/021 Keras Project Solutions - Missing Data - Part One.en.srt  21.8 KB
- 04 Matplotlib and Visualization Overview/004 Matplotlib - Implementing Figures and Axes.en.srt  21.8 KB
- 08 Convolutional Neural Networks with TensorFlow/012 CNN on Real Image Files - Reading in the Data.en.srt  21.7 KB
- 07 Artificial Neural Network and TensorFlow Basics/010 Keras Syntax - Creating and Training the Model.en.srt  21.4 KB
- 06 Pandas and Scikit-Learn Crash Course/006 Pandas - DataFrames - Part Three.en.srt  21.4 KB
- 08 Convolutional Neural Networks with TensorFlow/014 CNN on Real Image Files - Creating the Model.en.srt  21.2 KB
- 11 Classical Q Learning/012 Continuous Q-Learning Theory - Part One - Environment Setup.en.srt  21.0 KB
- 05 Machine Learning, Deep Learning, and Reinforcement Learning/002 Supervised Machine Learning Process.en.srt  20.4 KB
- 04 Matplotlib and Visualization Overview/002 Matplotlib Basics.en.srt  20.4 KB
- 09 Reinforcement Learning - Core Concepts/003 Rewards, Discount Factors, and Bellman Equation.en.srt  20.3 KB
- 07 Artificial Neural Network and TensorFlow Basics/013 Keras Regression - EDA Continued.en.srt  19.9 KB
- 08 Convolutional Neural Networks with TensorFlow/006 CNN on MNIST - The Data.en.srt  19.4 KB
- 09 Reinforcement Learning - Core Concepts/002 Agents, Environments, and Policy.en.srt  18.9 KB
- 07 Artificial Neural Network and TensorFlow Basics/022 Keras Project Solutions - Dealing with Missing Data - Part Two.en.srt  18.9 KB
- 08 Convolutional Neural Networks with TensorFlow/002 Image Filters and Kernels.en.srt  18.7 KB
- 07 Artificial Neural Network and TensorFlow Basics/011 Keras Syntax - Model Evaluation.en.srt  18.6 KB
- 08 Convolutional Neural Networks with TensorFlow/009 CNN on CIFAR-10 - The Data.en.srt  18.1 KB
- 06 Pandas and Scikit-Learn Crash Course/008 Scikit-Learn - Using Train-Test-Split.en.srt  18.1 KB
- 10 Open AI Gym Overview/002 OpenAI Overview and History.en.srt  17.8 KB
- 07 Artificial Neural Network and TensorFlow Basics/004 Activation Functions.en.srt  17.4 KB
- 02 Course Set-Up and Installation Procedures/003 Environment Setup Walkthrough.en.srt  17.4 KB
- 11 Classical Q Learning/008 Q-Learning Implementation - Part Two - Table and Hyperparameters.en.srt  17.3 KB
- 12 Deep Q-Learning/004 DQN Theory and Intuition - Part Two - Neural Networks for RL.en.srt  17.1 KB
- 05 Machine Learning, Deep Learning, and Reinforcement Learning/001 What is Machine Learning, Deep Learning, and Artificial Intelligence_.en.srt  17.0 KB
- 07 Artificial Neural Network and TensorFlow Basics/015 Keras Regression - Model Evaluation and Predictions.en.srt  16.9 KB
- 03 Numpy Basics Overview/003 Numpy Operations - Part One.en.srt  16.9 KB
- 07 Artificial Neural Network and TensorFlow Basics/005 Multi-Class Classification Considerations.en.srt  16.8 KB
- 11 Classical Q Learning/004 Q-Learning Theory - Part Two - Q Target Equation.en.srt  16.8 KB
- 11 Classical Q Learning/016 Continuous Q-Learning - Part Five - Functions and Hyperparameters.en.srt  16.3 KB
- 07 Artificial Neural Network and TensorFlow Basics/009 Keras Syntax - Preparing the Data.en.srt  16.2 KB
- 11 Classical Q Learning/011 Q-Learning Implementation - Part Five - Visualization and Utilization.en.srt  16.0 KB
- 07 Artificial Neural Network and TensorFlow Basics/002 Perceptron Model.en.srt  16.0 KB
- 06 Pandas and Scikit-Learn Crash Course/003 Pandas - Series Part Two.en.srt  16.0 KB
- 01 Course Overview/002 Course Curriculum Overview.en.srt  15.8 KB
- 12 Deep Q-Learning/017 DQN - Exercise Solutions.en.srt  15.5 KB
- 11 Classical Q Learning/006 Q-Learning Theory - Part Four - Programmatic Q Updates.en.srt  15.4 KB
- 07 Artificial Neural Network and TensorFlow Basics/026 Keras Project Solutions - Model Evaluation.en.srt  14.8 KB
- 06 Pandas and Scikit-Learn Crash Course/002 Pandas - Series Part One.en.srt  13.9 KB
- 06 Pandas and Scikit-Learn Crash Course/005 Pandas - DataFrames - Part Two.en.srt  13.8 KB
- 10 Open AI Gym Overview/004 OpenAI Gym - Environment Key Ideas.en.srt  13.5 KB
- 07 Artificial Neural Network and TensorFlow Basics/019 Keras Project Notebook Exercise Overview.en.srt  13.1 KB
- 08 Convolutional Neural Networks with TensorFlow/015 CNN on Real Image Files - Model Evaluation.en.srt  12.9 KB
- 08 Convolutional Neural Networks with TensorFlow/017 CNN Exercise Project Solutions.en.srt  12.8 KB
- 07 Artificial Neural Network and TensorFlow Basics/014 Keras Regression - Data Preprocessing and Model Creation.en.srt  12.7 KB
- 03 Numpy Basics Overview/004 Numpy Operations - Part Two.en.srt  12.5 KB
- 11 Classical Q Learning/018 Q-Learning Exercise Project.en.srt  12.5 KB
- 07 Artificial Neural Network and TensorFlow Basics/016 Keras Classification - EDA and Preprocessing.en.srt  12.2 KB
- 01 Course Overview/003 Course Success and Overview.en.srt  12.0 KB
- 04 Matplotlib and Visualization Overview/003 Matplotlib - Understanding the Figure Object.en.srt  12.0 KB
- 12 Deep Q-Learning/012 DQN - Keras-RL2 - Part One - Overview.en.srt  11.8 KB
- 11 Classical Q Learning/005 Q-Learning Theory - Part Three - Q-Update Equation.en.srt  11.7 KB
- 07 Artificial Neural Network and TensorFlow Basics/003 Neural Networks.en.srt  11.6 KB
- 12 Deep Q-Learning/009 DQN Manual Implementation - Part Two - Artificial Neural Network.en.srt  11.5 KB
- 08 Convolutional Neural Networks with TensorFlow/010 CNN on CIFAR-10 - Evaluating the Model.en.srt  11.3 KB
- 03 Numpy Basics Overview/006 Numpy Exercise Solutions.en.srt  11.3 KB
- 08 Convolutional Neural Networks with TensorFlow/004 Pooling Layers.en.srt  11.0 KB
- 04 Matplotlib and Visualization Overview/007 Matplotlib Styling - Legends.en.srt  10.7 KB
- 08 Convolutional Neural Networks with TensorFlow/008 CNN on MNIST - Model Evaluation.en.srt  10.1 KB
- 04 Matplotlib and Visualization Overview/010 Matplotlib Exercise Questions Overview.en.srt  9.7 KB
- 08 Convolutional Neural Networks with TensorFlow/011 Downloading Data Set for Real Image Lectures.en.srt  9.0 KB
- 12 Deep Q-Learning/014 DQN - Keras-RL2 - Part Three - Creating the ANN.en.srt  9.0 KB
- 09 Reinforcement Learning - Core Concepts/004 Deterministic vs. Stochastic Processes.en.srt  8.1 KB
- 04 Matplotlib and Visualization Overview/005 Matplotlib - Figure Parameters.en.srt  7.9 KB
- 12 Deep Q-Learning/008 DQN Manual Implementation - Part One - Imports and Environment.en.srt  7.9 KB
- 11 Classical Q Learning/014 Continuous Q-Learning Theory - Part Three - Discretization Theory.en.srt  7.8 KB
- 08 Convolutional Neural Networks with TensorFlow/005 MNIST Data Set Overview.en.srt  7.7 KB
- 12 Deep Q-Learning/003 DQN Theory and Intuition - Part One - Review of Core RL Ideas.en.srt  7.4 KB
- 04 Matplotlib and Visualization Overview/001 Introduction to Matplotlib.en.srt  6.9 KB
- 12 Deep Q-Learning/002 History of DQN.en.srt  6.9 KB
- 04 Matplotlib and Visualization Overview/009 Advanced Matplotlib Commands (Optional).en.srt  6.7 KB
- 11 Classical Q Learning/001 Introduction to Classical Q-Learning Overview.en.srt  6.4 KB
- 07 Artificial Neural Network and TensorFlow Basics/025 Keras Project Solutions- Creating and Training the Model.en.srt  6.1 KB
- 12 Deep Q-Learning/016 DQN - Exercise Overview.en.srt  5.9 KB
- 11 Classical Q Learning/002 History of Q-Learning.en.srt  5.8 KB
- 07 Artificial Neural Network and TensorFlow Basics/024 Keras Project Solutions - Data Preprocessing.en.srt  5.5 KB
- 12 Deep Q-Learning/013 DQN - Keras-RL2 - Part Two - Imports and Environment.en.srt  5.0 KB
- 06 Pandas and Scikit-Learn Crash Course/033 Advertising.csv  4.1 KB
- 08 Convolutional Neural Networks with TensorFlow/016 CNN Exercise Project Overview.en.srt  4.0 KB
- 07 Artificial Neural Network and TensorFlow Basics/001 Introduction to Artificial Neural Networks.en.srt  3.4 KB
- 07 Artificial Neural Network and TensorFlow Basics/008 TensorFlow vs. Keras Explained.en.srt  3.2 KB
- 03 Numpy Basics Overview/001 Introduction to Numpy Section.en.srt  3.1 KB
- 12 Deep Q-Learning/001 DQN Section Overview.en.srt  3.1 KB
- 09 Reinforcement Learning - Core Concepts/001 Overview of Core Concepts for Reinforcement Learning Section.en.srt  2.8 KB
- 01 Course Overview/001 Welcome Message.html  2.7 KB
- 08 Convolutional Neural Networks with TensorFlow/001 Convolutional Neural Networks Section Overview.en.srt  2.7 KB
- 07 Artificial Neural Network and TensorFlow Basics/018 Keras Classification - Overview of Project Options.en.srt  2.6 KB
- 03 Numpy Basics Overview/005 Numpy Exercise Overview.en.srt  2.1 KB
- 10 Open AI Gym Overview/001 Introduction to OpenAI Gym Section.en.srt  1.6 KB
- 02 Course Set-Up and Installation Procedures/002 Note on Environment Setup.html  1.6 KB
- 06 Pandas and Scikit-Learn Crash Course/001 Pandas and Scikit-Learn Overview.html  1.1 KB
- 09 Reinforcement Learning - Core Concepts/005 Tabular Reinforcement Learning.html  1.1 KB
- 08 Convolutional Neural Networks with TensorFlow/external-assets-links.txt  180 bytes
 
    Download Torrent
    
    Related Resources
    
    Copyright Infringement
    
        If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.